
Zentrum für

Technomathematik

Optimization-Based
Reachability Analysis
for Landing Scenarios

Dissertation
submitted to University of Bremen

for the degree of Dr. rer. nat.

by

Kai Wah Chan

1st Reviewer: Prof. Dr. Christof Büskens, University of Bremen
2nd Reviewer: Dr. Stephan Theil, German Aerospace Center Bremen
Date of Defense: October 11, 2022





iii

Abstract

In this work, optimization-based algorithms are presented to approximate reachability sets.
A reachability set comprises all dynamic system states that admissible controls can reach
for a given initial state. Approaches based on the theory of optimization and optimal con-
trol have the advantage here that further constraints may be included in addition to the
dynamics and the boundary conditions. However, solving nonlinear optimization tasks is
considered costly in terms of time, so this should be done in a directed manner that yields
as much insight as possible.
For this reason, the presented algorithms embed the necessary optimization runs in a ge-
ometric framework. In particular, convex sets and properties of polytopes are discussed
in this work, which allows a structural notion of geometric objects in higher dimensions.
The optimization theory is fundamental to this work in treating nonlinear and convex pro-
grams. In the dynamic context, optimal control processes are introduced, minimizing a cost
functional subject to a first-order ordinary differential equation and other constraints. The
parametric sensitivity analysis is an essential part of this work. It is a post-optimal tool to
acquire additional knowledge from a solved optimization without significant effort.
Three algorithms for set approximation are presented. They are based on grids and poly-
topes. This work uncovers the parallelization potential and mathematical properties of the
outcome of the algorithms. A boundary reconstruction of smooth convex sets through a
second-order interpolation is possible with these properties. Furthermore, they allow dif-
ferent initial guess strategies to aim for fast convergence of trajectory recalculations.
The methods are not merely theoretical but can be applied to real-world scenarios. The
mathematical model describing the behavior of a spacecraft during landing is formulated
to prove this. For this scenario, the reachability set is calculated with the methods of this
work and visualized. In the process, convexification is performed. The computation times
and advantages of the presented algorithms are elaborated to consider the application of
the results of this work in future space missions.

Keywords Reachability · Algorithms · Convex Optimization · Nonlinear Programming ·
Optimal Control · Parametric Sensitivity Analysis · Polytopes
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Zusammenfassung

In dieser Arbeit werden optimierungsbasierte Algorithmen zur Approximation von Erreich-
barkeitsmengen vorgestellt. Eine Erreichbarkeitsmenge umfasst alle Zustände eines dyna-
mischen Systems, die durch zulässige Steuerungen bei einem gegebenen Anfangszustand
erreicht werden. Ansätze, die auf der Optimierung und optimalen Steuerung basieren, ha-
ben dabei den Vorteil, dass neben der Dynamik und den Randbedingungen weitere Neben-
bedingungen einbezogen werden können. Allerdings gilt das Lösen nichtlinearer Optimie-
rungsaufgaben als zeitaufwendig, so dass dies gezielt geschehen sollte, um möglichst viele
Erkenntnisse zu gewinnen.
Aus diesem Grund betten die vorgestellten Algorithmen die nötigen Optimierungsläufe in
einen geometrischen Rahmen ein. Insbesondere werden in dieser Arbeit konvexe Mengen
und Eigenschaften von Polytopen diskutiert, was eine strukturelle Vorstellung von geome-
trischen Objekten in höheren Dimensionen ermöglicht. Die Optimierungstheorie stellt das
Fundament dieser Arbeit für die Behandlung nichtlinearer und konvexer Programme dar.
Im dynamischen Kontext werden optimale Steuerprozesse eingeführt, die ein Kostenfunk-
tional minimieren, das einer gewöhnlichen Differentialgleichung erster Ordnung und ande-
ren Beschränkungen unterliegt. Die parametrische Sensitivitätsanalyse ist ein wesentlicher
Bestandteil dieser Arbeit. Sie ist ein post-optimales Werkzeug, um ohne großen Aufwand
zusätzliche Erkenntnisse aus einer gelösten Optimierung zu gewinnen.
Es werden drei Algorithmen zur Mengenapproximation vorgestellt. Sie basieren auf Git-
tern und Polytopen. Diese Arbeit deckt das Parallelisierungspotenzial der Algorithmen und
die mathematischen Eigenschaften der Approximationsergebnisse auf. Mit diesen Eigen-
schaften ist eine Randrekonstruktion von glatten konvexen Mengen durch eine Interpola-
tion zweiter Ordnung möglich. Darüber hinaus erlauben sie verschiedene Strategien für
Startschätzungen, um eine schnelle Konvergenz bei Trajektorien-Neuberechnungen zu er-
reichen.
Die Methoden sind nicht nur theoretischer Natur, sondern können auch auf reale Szenari-
en angewendet werden. Um dies zu beweisen, wird ein mathematisches Modell formuliert,
das das Verhalten eines Raumschiffs bei der Landung beschreibt. Für dieses Szenario wird
die Erreichbarkeitsmengemit denMethoden dieser Arbeit berechnet und visualisiert. Dabei
wird eine Konvexifizierung durchgeführt. Es werden die Berechnungszeiten und die Vor-
teile der vorgestellten Algorithmen herausgearbeitet, um die Anwendung der Ergebnisse
dieser Arbeit in zukünftigen Weltraummissionen zu erwägen.

Schlüsselwörter Erreichbarkeit · Algorithmen · Konvexe Optimierung · Nichtlineare Opti-
mierung · Optimalsteuerung · Parametrische Sensitivitätsanalyse · Polytope
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Chapter 1

Introduction

1.1 Motivation

In recent years, space exploration has gained in attractiveness and importance pushed by
private companies on the one hand. On the other hand, the questions of the origins of
the universe, declining resources on Earth, and the imminent need for relocation due to
climate change drive scientists worldwide to be engaged in space-related fields. Space
projects are well funded and represent a chance for institutes or nations to enhance their
prestige. Thus, hard- and software and procedures during mission application are designed
in a highly but reasonably conservative manner attaching importance to reliability and ro-
bustness to ensure success. The standard for preparation is therefore high because once
started, there are hardly any margins to deal with unforeseen circumstances.
Especially in deep-space exploration, when an uncrewed spacecraft is sent out, complete
autonomy is pursued during mission design and realization. Controlling a spacecraft far
from Earth is not viable because the signal propagation delay becomes too large. Conse-
quently, decision-making must be conducted through a module of an on-board computer.
This module must be supplied with data from equipped sensors and cameras processed
through a relatively weak processor. Processors used in a spacecraft must withstand the
solar radiation, and as a result of a trade-off, computational capacities are decreased.
The focus of this work is to design an efficient algorithm that holds the potential to com-
pute so-called reachable sets in real-time. These sets contain states a dynamic system, i.e.
a mathematical model of motion, can attain through feasible control inputs given its ini-
tial state. Provided this set, too risky maneuvers may be excluded and, instead, the most
promising course of action may be chosen by the decision-making module. In rare cases,
reachable sets can be explicitly stated, but mostly they are approximated with numerical
and computative means. These are highly complex computations in which, theoretically,
all possible control configurations over time must be propagated. In addition, strict require-
ments for reliability and real-time capability must be fulfilled.
The challenging hardware constraints do not prevail on the roads, and expensive meth-
ods to implement reachability analysis in autonomous driving are already state-of-the-art.
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2 Chapter 1. Introduction

Typically, this application scenario considers fewer degrees of freedom, which aids in practi-
cability. The reachability set is only used in the space domain’s mission design and analysis
phase. In the critical phase of a mission, pre-calculated boundaries are tested to determine
whether or not a target can be reached under the prevailing conditions. These boundaries
are based on strong simplifications that estimate a reachability set overly conservatively. If
an algorithm provides the reachability set under real-time requirements, mission flexibility
and robustness of a spacecraft in terms of guidance, navigation, and control can be signifi-
cantly enhanced. A target may be evaluated concerning costs and risk and the influence of
uncertainties on the current system state.
From a mathematical point of view, calculating a reachability set or a sufficiently accurate
approximation is an appealing challenge. Mission requirements must be strictly adhered
to in addition to a highly complex mathematical model. An approach using optimization
and optimal control to address this task appears promising in this regard. With this pow-
erful and versatile tool, those dynamic and mission constraints are respected, and it also
optimizes in a definable aspect. The landing trajectory of a spaceship, for example, can
be calculated with the help of optimization in the most resource-saving way. However, for
reachability analysis, many such trajectories or optimization tasks would have to be de-
termined or solved. Each optimization run is considered computationally expensive. For
this reason, each optimization run should be as insightful as possible so that the number
of expensive calculations can be kept low.

1.2 Reachability Analysis

The dynamic feasibility problem

ẋ (t) = fdyn (x (t), u(t), t) , (1.1)
C(x (t), u(t))≤ 0nC

, x (t0) ∈ X0, x
�

t f

� ∈ X f ,

x (t) ∈ Rnx , u(t) ∈ Rnu , t ∈ �t0, t f

�

is considered in the reachability analysis in the scope of this work. It consists of a system
dynamic fdyn and path constraints C . A control u with nu components is sought that leads
to a trajectory x of nx states. The process takes place in the interval

�

t0, t f

�

, the process
time. Both trajectory and control must satisfy the constraints in the process time. For the
state, there are boundary values through sets X0 and X f . The admissible final states form
the so-called (forward) reachability set, which is defined as follows:

Rt f
(x0) := {x f ∈ Rnx | ∃u(t) ∈ Rnu ∧ ∃x (t) ∈ Rnu ∀t ∈ [0, t f ]:

(1.1) holds with x (t f ) = x f and X0 = {x0}} (1.2)

In [6, 5], approaches to compute a reachable set are classified by the categories
i. set-valued methods,
ii. level set methods,
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iii. optimization based algorithms,
and an overview is provided. The first two categories regards no path constraints and
either X0 or X f is a singleton, while the other is Rnx , thus does not represent a constraint.
Set-valued methods are treated in [34, 47] among others, in which the focus lies in the
reachable set of a time interval

R[0,τ](x0) :=
⋃︂

t∈[0,τ]

Rt(x0) (1.3)

subject to a linear dynamic fdyn. If sets of initial states and controls are considered when
solving a differential equation, one speaks of set-valued methods. Given an initial state
x0 ∈ Rnx the solution for a linear time-invariant fdyn can be analytically specified through
a matrix exponential (cf. [68]). The initial values and controls are propagated over several
steps with a time increment∆t. After each step, a reachability set is created and a union is
eventually formed. If special geometries, such as zonotopes [4] or ellipsoids [46] are taken
as a basis, set operations can be simplified. In case of nonlinear dynamics, linearization can
be applied (cf. [3]). Another approach falling into the class of set-valued methods is based
on the actual integration of all feasible controls which can be realized by parallelization on
the GPU [57]. The underlying mathematical problem of set-valued methods can be formu-
lated through differential inclusions in which the first-order ordinary differential equation
in (1.1) is replaced by

ẋ (t) ∈ F (x (t) , t) ⊂ Rnx .

See [11] for more details. A short introduction to the subject of differential inclusions and
their origins is given in [22].
In level set methods, an implicit surface function φ : Rnx → R is derived to specify the
reachable set by

φ (z)

¨

≤ 0 for z ∈Rt f
(x0)

> 0 for z ̸∈Rt f
(x0)

.

In [52], backward reachability (or controllability) sets

Ct0
(x f ) :=
�

x0 ∈ Rnx | ∃u(t) ∈ Rnu ∧ ∃x (t) ∈ Rnu ∀t ∈ [0, t f ]:

(1.1) holds with x (t0) = x0 and X f =
�

x f

		

(1.4)

are regarded, and it is shown that the implicit surface function φ characterizing the set is
the viscosity solution of a Hamilton-Jacobi-Isaacs partial differential equation. Solutions
of these PDEs are rather difficult to obtain, and this approach is considered only suitable
for dynamic systems with up to four states (cf. [5]). Recently, as in [13], neural networks
have been designed to solve these PDEs making the level set method more applicable for
higher dimensional state spaces.
Optimization-based algorithms form the main topic of this work. In this class of meth-
ods, a cost functional is defined, which, together with (1.1) as the constraints, form an
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optimal control problem (OCP). Unlike the other set-valued or level set methods, path con-
straints and constraints to the initial and final states are easily incorporated. Different
procedures exist to approximate the forward or backward reachable sets depending on the
cost functional. If the set is convex, an approach based on the idea of the support function
is proposed by [10]. Elements on the nx − 1-dimensional sphere are mapped to a support
point that must lie on the boundary of the reachable set. This approach is extended in [26],
where an over- and under-approximation given by polytopes is presented based on bound-
ary elements of the set and supporting hyperplanes. In case of a non-convex reachable set,
[12] suggests a grid approach. An equidistant grid is obtained by discretizing a subset
of the state space. Each grid point is seen as a target a trajectory should lead to. Such
a trajectory is found through a cost functional minimizing the distance between the final
state and the grid point. If the optimal distance is (practically) zero, the corresponding
grid point is an element of the reachable set. This approach is applied in [5], where the
OCP is discretized using pseudo-spectral methods.

1.3 Outline of Work and Contribution

This work creates a sound foundation in geometry and optimization theory for the reader.
This knowledge is necessary to examine existing optimization-based algorithms for the ap-
proximation of reachable sets and to explain their extensions. These algorithms are applied
to simulative landing scenarios. Two models for lander dynamics are derived, which even-
tually lead to convex and nonlinear programs.
Chapter 2 introduces convex sets and their properties. They play a major role in the de-
sign of the algorithms in Chapter 4. Among others, simplices and convex polytopes are
demonstrated as examples of convex sets. Concepts like the convex hull and terminology
concerning polytopes are set up, simplifying explanations in later chapters. This chapter
concludes with the definition of star-convexity and a star-shaped polytope.
At the beginning of Chapter 3, static optimization tasks are defined. An objective’s mini-
mizer is sought subject to equality and inequality constraints in these problems. The La-
grange methodology is used, and optimality conditions are derived. There are two classes
of problems regarded in this context: nonlinear and convex programming. The SQPmethod
and a primal-dual interior-point method are explained to solve mathematical programs.
The solution of an optimization task can be further examined in a parametric sensitivity
analysis. Parametric sensitivities are a practically free byproduct of an optimization that
describes the solution’s change subject to perturbations. Finally, optimal control problems
are treated. They differ from static optimization problems in that the minimizer is sought
in infinite-dimensional function spaces over a time interval. In this work, optimal control
problems are first discretized and transformed into a nonlinear program. Single-step meth-
ods are demonstrated for discretization. Subsequently, the nonlinear program is solved us-
ing the methods presented in the first part of Chapter 3.
In Chapter 4, the knowledge of Chapters 2 and 3 is brought together, and algorithms are
presented for the approximation of sets. At first, simple geometric bodies are defined to
test the methods. Each approach is explained separately by describing the process, list-
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ing the output properties, and discussing their advantages and disadvantages concerning
their performances, reconstructing the examples. From the many necessary optimizations
associated with each algorithm, more knowledge can be extracted than simply a solution
of (1.1), which is the key message of Chapter 4.
Landing scenarios for spacecrafts are regarded in Chapter 5. In the first instance, a mathe-
matical model is introduced and further processed in two different ways. In both cases, it
is investigated where a spacecraft can land safely. In the first approach, a transformation
is performed so that the three degrees of freedom that the final position state in space has,
becomes two. The other approach is to relax the problem and other constraints so that
convex programs are created that can be solved reliably and robustly using primal-dual
interior-point methods.
The final Chapter 6 summarizes the critical aspects of this work and concludes. In the end,
an outlook with open ends for further research is presented.
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Chapter 2

Geometry of Polytopes in Higher
Dimensions

In nature, all objects are perceived as three-dimensional. Through the senses of sight and
touch, a humans can perceive these objects. They are able to process and convert them into
two-dimensional entities like paintings or frames of a movie we project on screens. How-
ever, our conception has difficulties whenwe try to imagine higher dimensional objects. The
same can be said about the sets this dissertation examines. A two- or a three-dimensional
set is a planar, respectively spatial, object. We can depict one-dimensional sets with lines;
a zero-dimensional set or a singleton can be exhibited through a point. When we increase
the number of dimensions, the means to illustrate decreases, and we must employ mathe-
matical constructs for orientation in higher dimensions. This chapter treats the necessary
geometrical foundation to make a class of sets, so-called polytopes, more concrete, which
challenge our conception due to their dimensionality.

2.1 Convex Sets

In general, sets with elements of the Rn can appear in arbitrary shapes. For example, they
may be disconnected, have holes, or consist of discrete points. The focus of this section
lies in convex sets. They are commonly introduced in the literature for convex optimization
like [16] for instance, which deals with finding a minimizer of a function in a convex set.
Convex sets also serve as a foundation for studying polytopes treated in the subsequent
section.
Definition 2.1 (Affine and convex sets). Let y1, y2 ∈ C ⊆ Rn be two arbitrary points. C is

i. affine if and only if

αy1 + (1−α) y2 ∈ C for any α ∈ R holds,

ii. convex if and only if

αy1 + (1−α) y2 ∈ C for any α ∈ [0,1] holds.

7
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Figure 2.1: Convex (left) and non-convex (right) sets

In other words, for any two points of a convex set, the line segment connecting them is
also contained in the set. Figure 2.1 illustrates this, where the left object is convex, and
the right one is non-convex. If the set is affine, the line through both points is contained in
the set. Thus, any affine set is also convex.

Example 2.2. Consider the ball

Bϵ(o) := {y ∈ Rn | ∥y − o∥ ≤ ϵ} (2.1)

with center o ∈ Rn and radius ϵ ≥ 0. Given y1, y2 ∈ Bϵ(o) and α ∈ [0,1],

∥αy1 + (1−α) y2 − o∥ ≤ α∥y1 − o∥+ (1−α)∥y2 − o∥ ≤ ϵ

holds due to the subadditivity and absolute homogeneity of the norm. Thus, we conclude
αy1 + (1−α) y2 ∈ Bϵ(o), and any ball is convex. The same applies to the open ball, i.e., the
interior

B�ϵ (o) := {y ∈ Rn | ∥y − o∥< ϵ}

but not for the sphere, i.e., the boundary

∂ Bϵ(o) := {y ∈ Rn | ∥y − o∥= ϵ} . (2.2)

The points on the line segment connecting two elements of a convex set are so-called convex
combinations of the two. Any finite number of the set’s elements may form those combina-
tions. An affine version exists as well.

Definition 2.3 (Affine and convex combination). Given a finite number of points
y1, . . . , yk ∈ Rn, k ∈ N, the point

α1 y1 + · · ·+αk yk with α1 + · · ·+αk = 1

is called

i. an affine combination for α1, . . . ,αk ∈ R.
ii. a convex combination for α1, . . . ,αk ∈ [0,1].
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The following lemma allows an alternate characterization of affine and convex sets through
affine and convex combinations.

Lemma 2.4 (Characterization of affinity and convexity). Some set C ⊆ Rn is

i. affine if and only if all affine combinations of elements in C are contained in C,

ii. convex if and only if all convex combinations of elements in C are contained in C.

Proof. A proof can be found in [7], p. 6.

Lemma 2.4 generalizes Definition 2.1. According to this characterization, instead of only
enclosing a line or a line segment, the corresponding set must contain more generic struc-
tures shaped by affine or convex combinations.
For some set C ⊆ Rn, its so-called affine or convex hull of C can be formed. In the literature,
these terms are commonly introduced as the “smallest” affine or convex set that contains C
(cf. [61]). The following is an equivalent definition.

Definition 2.5 (Affine and convex hull). Given some set C ⊆ Rn,

i. aff(C) := {α1 y1 + · · ·+αk yk | yi ∈ C, αi ∈ R, i = 1, . . . , k, α1 + · · ·+αk = 1, k ∈ N} de-
notes the affine hull of C.

ii. conv(C) := {α1 y1 + · · ·+αk yk | yi ∈ C, αi ∈ [0,1] , i = 1, . . . , k, α1 + · · ·+αk = 1, k ∈ N}
denotes the convex hull of C.

In other words, the convex (affine) hull of a set C consists of all convex (affine) combinations
of elements in C. If we look more closely at affine sets, we find that they are shifted linear
subspaces (cf. Theorem 1.2 in [61]).

Proposition 2.6 (Affine sets are shifted linear subspaces). Let Caff ⊆ Rn denote an affine
set. For arbitrary o ∈ Caff, Caff − o := {y − o | y ∈ Caff} is a linear subspace.

Proof. By definition, linear subspaces are closed under addition and scalar multiplication.
Choose y1, y2 ∈ Caff − o and α,β ∈ R arbitrarily. Note y1 + o ∈ Caff and y2 + o ∈ Caff. Regard
Lemma 2.4 and construct the affine combination

α (y1 + o) + β (y2 + o) + (1−α− β) o ∈ Caff

⇔ αy1 + β y2 + o ∈ Caff.

Consequently, αy1 + β y2 ∈ Caff − o holds, thus Caff − o is a linear subspace.

Linear spaces can be assigned a dimension. In the following, we would like to do the same
with convex sets to establish the correct wording for the further course of the work.

Definition 2.7 (Dimension of convex sets). Let C ⊆ Rn be a convex set. Define Caff := aff(C).
The dimension of C is defined as

dimC := dim (Caff − o) for any o ∈ Caff,

where Caff − o := {y − o | y ∈ C}. The dimension of the empty set is defined as −1.
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The latter definition indicates why since the beginning, we have proposed the affine coun-
terparts alongside, although this section’s name suggests a focus on convex sets. Besides
affine sets being shifted linear subspaces, we can observe that the following term establishes
another analogy between vector and affine spaces.
Definition 2.8 (Affinely independent). Points y0, . . . , yk ∈ Rn, k ∈ N, are affinely indepen-
dent if and only if y1 − y0, . . . , yk − y0 are linearly independent.

A k-dimensional vector space is generated by k linearly independent vectors, k+1 affinely
independent vectors generate a k-dimensional affine space.
Proposition 2.9 (Preservation of convexity under affine transformation). Let C ⊆ Rn be
a convex set and A∈ Rm×n and b ∈ Rm specify an affine map faff : Rn→ Rn, faff(y) = Ay + b.
Then, the image of C under faff

faff(C) := { faff(x) | x ∈ C}
is convex.
Proof. For any two points in faff(C), y1, y2 ∈ C shall denote corresponding elements in their
inverse image. For arbitrary α ∈ [0,1] it holds

α faff(y1) + (1−α) faff(y2) = α (Ay1 + b) + (1−α) (Ay2 + b)

= A(αy1 + (1−α) y2) + b = faff (αy1 + (1−α) y2)

Due to convexity of C , C contains αy1 + (1−α) y2, thus α faff(y1) + (1−α) faff(y2) ∈ faff(C)
is valid.

Hyperplanes are an example of affine spaces. They divide a vector space into two halfspaces.
Definition 2.10 (Hyperplane and halfspaces). Let a ∈ Rn \ {0} and β ∈ R. The set

H :=
�

y ∈ Rn | a⊤ y = β
	

is called hyperplane. Based on H, two halfspaces can be defined:

H≤ :=
�

x ∈ Rn | a⊤x ≤ β	 and H> :=
�

x ∈ Rn | a⊤x > β
	

.

H≤ is called closed lower halfspace and H> is called open upper halfspace. Analogously, H<
and H≥ can be defined.

The true intention behind the introduction of hyperplanes is the supporting hyperplane
theorem. A supporting hyperplane of a set touches the set’s boundary such that the set is
fully contained in one of the two halfspaces.
Definition 2.11 (Supporting hyperplane). Given C ⊂ Rn, let y0 be a point on the bound-
ary ∂ C of this set. If a ∈ Rn \ {0} exists such that C ⊂ �y ∈ Rn | a⊤ y ≤ a⊤ y0

	

, then
�

y ∈ Rn | a⊤ y = a⊤ y0

	

is called a supporting hyperplane to C at y0.

For a convex set, a supporting hyperplane can be determined at every boundary point.
Theorem 2.12 (Supporting hyperplane theorem). Let C ⊂ Rn be a closed convex set with
non-empty interior and y0 be any point on the boundary of C. There exists a supporting
hyperplane to C at y0.
Proof. A proof can be found in [65], p.11.
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2.2 Polytopes

The previous section has presented the properties of convex sets. The convex hull as a
mathematical operator has been introduced, which, provided some set C, generates an
enclosing convex set by supplementing it with all convex combinations viable with elements
in C. When C consists of a finite number of discrete points, its convex hull generates convex
polytopes. Polytopes serve as means to construct two algorithms presented in Chapter 4.
This section does not claim to cover the combinatorial nature within convex polytopes but
illustrates them as geometrical objects. For a deeper treatment of the combinatorial aspects,
it is referred to [72]. More geometric properties can be studied in [37, 65]. A classical
reference book that provides an overview of the polytope theory is [38]. For further reads,
[67] (especially chapters 15, 16, and 26) serves as a good starting point.
The convex hull of a discrete set of points is a polytope. The points that determine the
shape of the polytope are called vertices.
Definition 2.13 (Vertex). Given a set C ⊂ Rn of discrete points, v ∈ C is called a vertex if
conv(C \ {v}) ̸= conv(C).

The corners of a cube are illustrative examples of vertices because the convex hull of the
eight corners is the cube, but removing one results in a different object.
Definition 2.14 (Convex polytope). Given a set of finite points V := {v0, . . . , vk} ⊂ Rn,
its convex hull P := conv(V) is called convex polytope. If V is a set of vertices, V gives the
V-description of P. If dimP = n, P is called full-dimensional.

Certain parts of the boundary of a polytope result from the convex hulls of subsets of the
set of vertices. Hence, they represent convex polytopes and are generally called k-faces.
Definition 2.15 (k-face). Given a convex polytope P ⊂ Rn and a hyperplane H ⊂ Rn with
P� ∩H =∅, ∂P ∩H = F and dimF = k, F denotes a k-face of P. They are refered to as

i. vertices in the 0-dimensional case.

ii. edges in the 1-dimensional case.

iii. ridges in the (n− 2)-dimensional case.

iv. facets in the (n− 1)-dimensional case.

Besides the V-description of a convex polytope from Definition 2.14, there is also the H-
description. The latter allows the interpretation of a convex polytope as an intersection of
halfspaces.
Proposition 2.16 (H-description). Let some vertex set V ⊂ Rn denote the V-description of
the full-dimensional polytope P ⊂ Rn that has n f ∈ N facets. A matrix A∈ Rn f ×n and a vector
b ∈ Rn f exist such that

P = {x ∈ Rn | Ax ≤ b} . (2.3)

The right hand side of (2.3) gives the H-description of P.
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Proof. A proof can be found in [72] in Section 1.1.

In practice, matrix A and vector b of the H-description of a full-dimensional convex poly-
tope P ⊂ Rn can be stated, given an interior point o ∈ P� (cf. [70]). Assuming an arbitrary
ordering of the n f facets of P, Fk ⊂ ∂P shall denote the k-th facet. Select affinely indepen-
dent points y1, . . . , yn ∈ Fk. Since o /∈ aff(Fk), it holds that ỹ i = yi − o for i = 1, . . . , n are
linearly independent due to Definition 2.8. The linear equation

Ykak =

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠
, where Yk :=

⎡

⎢

⎣

ỹ⊤1...
ỹ⊤n

⎤

⎥

⎦
, (2.4)

can be uniquely solved because Yk is invertible. The transposed solution a⊤k is the k-th row
of matrix A and 1 + a⊤k o is the k-th component of the right hand side b yielding the H-
description. The question of how to choose affinely independent y1, . . . , yn of a facet does
not arise as we will regard triangulated facets in the following, and the vertices of those
triangles can be selected. This approach potentially leads to redundant inequalities of the
H-description, as a facet may be subdivided into multiple triangles. However, the polytope
is wholly specified in this manner.
The V- and the H-description of a convex polytope are equivalent and can be transformed
into the other. The process to receive the vertices of a polytope, described by inequalities,
is called vertex enumeration. The task to find the H-description, given the vertices of a
polytope, is called facet enumeration or convex hull. Vertex and facet enumeration are dual
problems the Avis-Fukuda algorithm solves in polynomial time and space, presented in [8].
Typically, triangular elements subdivide and specify the facets of a polytope. Let nV denote
the number of vertices and nF the number of triangular subdivisions forming the facets of
an n-dimensional convex polytope. Then, the following inequalities hold and are tight [8]:

nV ≤ φ (n, nF ) and nF ≤ φ (n, nV) (2.5)

with φ (n, m) =
�

m− ⌈ n2 ⌉
⌊ n2 ⌋
�

+
�m− 1− ⌈ n−1

2 ⌉
⌊ n−1

2 ⌋
�

The generalization of triangles in any dimension is called simplex. They represent an ex-
ample of convex polytopes.

Definition 2.17 (k-simplex). Let k ≤ n and v0, . . . , vk ∈ Rn be affinely independent points.
The polytope conv({v0, . . . , vk}) is called a k-simplex.

Any convex hull of a subset of a simplex’ set of vertices is a k-face in the form of a k-simplex.
0- to 3-dimensional simplices are illustrated in Figure 2.2. Simplices of higher dimensions
are difficult to visualize but remain conceivable because each vertex is connected to another
by an edge. Assume v0, . . . , vn ∈ Rn denote the vertices of a full-dimensional simplex. The
simplex’ volume can be computed with the following formula:

vol(conv({v0, . . . , vn})) :=
1
n!

|︁

|︁det
�

v1 − v0 . . . vn − v0

�|︁

|︁ . (2.6)
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Figure 2.2: Examples of simplices of different dimensions

Simplices play an essential role in the following because they describe the boundary of a
polytope. The notion of ordered identifiers is introduced to specify k-simplices in a set V of
vertices. For this purpose, the elements in V are uniquely indexed so that k + 1 numbers
may be assigned to a k-simplex. These k+ 1 numbers are the indices of the vertices of the
simplex.

Definition 2.18 (Ordered identifier). Let
�

v1, . . . , vnv

	 ⊂ Rn be a family of nv ∈ N points
and I ∈ {1, . . . , nv}k+1 denote a multi-index with k + 1 ordered non-repetitive components
I j < I j+1, j = 1, . . . , k. I is called ordered identifier of k-simplex F ⊂ Rn if and only if F =
conv(vI1 , . . . , vIk+1).

Typically, a so-called facet-vertex incidence matrix describes the boundary of a polytope.
However, the ordered identifier allows a cleaner presentation of the theory and can as well
be used in the numerical realization of a polytope1.
Besides convex polytopes, star-shaped sets are utilized and examined in the following chap-
ters.

Definition 2.19 (Star-shaped set). A set C ⊂ Rn is called star-shaped if and only if o ∈ C
exists such that, for any y ∈ C and α ∈ [0,1], it holds αo+(1−α) y ∈ C. The point o is called
vantage point.

affine convex star-shaped

Figure 2.3: Relation of set properties

The term star-convex is a synonym for star-shaped. Similarities of Definitions 2.1 and 2.19
are obvious. Figure 2.3 illustrates the relation between the affine, convex, and star-shaped
properties of a set. Any affine set is also convex since it contains all convex combinations of

1The ordered property is helpful to organize the multi-indices as keys in a hash map as duplicates can be
easily detected.
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its elements as it consists of all affine combinations. Any convex set is star-shaped, as any
element can be the vantage point o.

Definition 2.20 (Star-shaped triangulated polytope). Given a family of points V =
�

v1, . . . , vnv

	

, let {Ii}i=1,...,n f
⊂ {1, . . . , nv}n denote a non-repetitive sequence of ordered iden-

tifiers of (n− 1)-simplices Fi = conv
�

vI1
i
, . . . , vIn

i

�

with dim
�

Fi ∩F j

�

< n − 1 for some
i, j = 1, . . . , n f with i ̸= j.
A set P ⊂ Rn is called star-shaped triangulated polytope if and only if the following conditions
are met:

i. P is star-shaped,

ii. ∂P =
n f
⋃︁

i=1
Fi,

iii. P� ̸= ∅.
The pair
�

V, {Ii}i=1,...,n f

�

is called boundary description2 of P.

The type of polytopes described in Definition 2.20 is star-shaped and fully defined by a
finite set of points and ordered identifiers that determine the simplicial subdivision of the
boundary. Furthermore, it has a non-empty interior. The second condition assures that
the boundary is completely assembled and has no holes. The terms introduced in Defi-
nition 2.15 will be used hereafter for any polytope that has a boundary description. Al-
though strictly speaking they do not necessarily apply anymore because of the potential
non-convexity, among other reasons, a conceptual structuring with k-faces is suitable.

P

v1

v2
v3

v4

v5v7

v8

v6

o

Figure 2.4: Example of a star-shaped triangulated polytope

2Although boundary description is introduced for more general polytopes, it is an established term for
convex polytopes, also based on a triangulation (cf. [67], Chapter 26). Subdividing the boundary into simplices
and identifying them is a common way to specify a polytope. For example, Matlab’s convex hull function works
like this and returns identifiers to (n− 1)-simplices of the triangulated boundary (cf. [14]).
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Figure 2.4 illustrates a star-shaped triangulated polytope P ⊂ R2. The points v1, . . . , v8

represent vertices (and ridges since its a planar object). By Ii = (i, i + 1) for i = 1, . . . , 7
and I8 = (1, 8) the sequence of ordered identifiers are given. They determine simplices
Fi = conv
�

vI1
i
, vI2

i

�

that form facets (or edges) of P. By connecting the facets with a vantage
point o ∈ P, as illustrated in Figure 2.4, a star-shaped simplicial polytope is partitioned into
full-dimensional simplices. This observation leads to the proposition about the volume of
polytopes that concludes this chapter.

Proposition 2.21 (Volume of a star-shaped triangulated polytope). Given the boundary
description
�

V, {Ii}i=1,...,n f

�

of a star-shaped triangulated polytope P ⊂ Rn and a vantage point
o ∈ P, the volume of polytope is

vol(P) :=
1
n!

n f
∑︂

i=1

|︁

|︁

|︁det
�

vI1
i
− o . . . vIn

i
− o
�

|︁

|︁

|︁ . (2.7)

Proof. Since the intersections of full-dimensional simplex partitions of P have dimensions
smaller than n− 1, their volume equals 0. Thus, the volumes of the n-simplices add up to
the volume of P. The right hand side of (2.7) follows directly from (2.6).
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Chapter 3

Optimization and Optimal Control

This chapter covers the optimization theory, which will be necessary for the algorithms in
Chapter 5. We distinguish between static and dynamic optimization. The first part is about
solving nonlinear programs (NLP). These are minimization tasks with sufficiently smooth
objective functions and constraints. SQP methods can solve them, approximating the prob-
lem quadratically in each iteration to approach a minimum successively. The sequentially
obtained quadratic problems belong (under certain conditions) to the class of convex pro-
grams (CP) treated in a subsequent section. CPs, in turn, can be solved very efficiently with
interior-point methods. We establish the fundamentals of parametric sensitivity analysis at
the end.
The second part of this chapter deals with optimal control problems (OCP). Unlike in non-
linear programming, OCPs take a time-dependent process into account. A cost functional is
minimized subject to a first-order ordinary differential equation (the dynamics), boundary
values, and further general constraints. The direct method for solving OCPs is presented.
A discretization leads to an NLP, which can then be solved using the approaches from the
first part of this chapter.
Reference books for nonlinear programming are [33] and [54] among others, which have
served as the main source. The latter also treats the post-optimal sensitivity analysis. [16]
is the primary source for convex programming in the scope of this work. Static optimiza-
tion is also covered in the context of optimal control problems in books such as [48] and
[18].

3.1 Static Optimization

This section deals with constrained minimization problems of the following form

min
x∈Rnopt

f (x)

subject to g(x) = 0,

h(x)≤ 0,

(OP)

17
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where f : Rnopt → R is called the objective function while g : Rnopt → Rng and h: Rnopt → Rnh

denote equality and inequality constraints. The function argument x ∈ Rnopt is a vector that
contains the optimization variables. Depending on the functions’ properties, we can make
different statements about (OP). In the following, general terms are established, and the
method of Lagrange multipliers is presented. The minimization problem (OP) is separately
regarded as convex and nonlinear programs. The behavior of a solution to a minimization
problem under perturbations is the subject of the parametric sensitivity analysis, which
concludes this section.

3.1.1 General Definitions

Unlike in unconstrained optimization, in which the minimizer of an objective function is
sought in the whole Rnopt , (OP) involves constraints. Subsequently, an element is called
feasible and is part of the feasible set if it fulfills those constraints.
Definition 3.1 (Feasibility). Given the constrained minimization problem (OP), a point x ∈
Rnopt is called feasible if and only if

g (x) = 0 and h (x)≤ 0

are fulfilled. X := {x ∈ Rnopt | g (x) = 0 and h (x)≤ 0} is referred to as the feasible set.

An element in the feasible set that solves (OP) is generally called a minimizer. When we
study algorithms that solves optimization tasks, we distinguish between global and local
minimizer.
Definition 3.2 (Global and local minimizer). Given the constrained minimization problem
(OP), a feasible point x∗ ∈ Rnopt is called

i. a global minimizer if and only if for all feasible x ∈ Rnopt \ {x∗}
ii. a local minimizer if a neighborhood N (x∗) ⊂ Rnopt exists such that for all feasible

x ∈N (x∗) \ {x∗}
the inequality

f (x∗)≤ f (x) (3.1)

holds. A feasible point x∗ is a strict minimizer if and only if the strict inequality is fulfilled in
(3.1).

The inequalities of (OP) are regarded differently compared to the equality constraints. An
inequality may be active or not.
Definition 3.3 (Active constraints and active set). Given a feasible point x ∈ Rnopt of
the constrained minimization problem (OP), let i ∈ {1, . . . , nh} denote some index. The
i-th inequality constraint is called active if and only if hi (x) = 0. The set A(x) :=
{i ∈ {1, . . . , nh} : hi(x) = 0} contains all active inequality constraints and is referred to as the
active set.
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In constrained optimization, the Lagrange function is defined as the sum of the objective
and weighted constraints.
Definition 3.4 (Lagrange function). Given the constrained minimization problem (OP), the
Lagrange function L : Rnopt ×Rng ×Rnh → R is defined as

L (x ,λ,µ) := f (x) +λ⊤g (x) +µ⊤h (x) (3.2)
where λ ∈ Rng ,µ ∈ Rnh are called Lagrange multipliers.

The Lagrange multipliers are also called dual variables, while x represents the primal vari-
ables. Accordingly, a dual problem to (OP) exists.
Definition 3.5 (Dual problem). Given the constrained minimization problem (OP) and its
Lagrange function L : Rnopt ×Rng ×Rnh → R as in (3.2), let q : Rng ×Rnh → R be a function
defined as

q (λ,µ) := inf
x∈Rnopt

L (x ,λ,µ) .

Then, the dual problem has the following form:
max

λ∈Rng ,µ∈Rnh
q (λ,µ)

subject to µ≥ 0
(DP)

For (OP) and its dual problem, the following relationship holds.
Theorem 3.6 (Weak duality). Let x∗ ∈ Rnopt and λ∗ ∈ Rng , µ∗ ∈ Rnh be the optimal solutions
of the primal problem (OP) and dual problem (DP) respectively. Then, the following inequality
holds:

q (λ∗,µ∗)≤ f (x∗) . (3.3)
This property is called weak duality.
Proof. For arbitrary λ and µ ≥ 0 and a feasible x̄ , q (λ,µ) ≤ L ( x̄ ,λ,µ) holds. Due to
feasibility, λ⊤g ( x̄) + µ⊤h ( x̄) ≤ 0 holds. Thus, L ( x̄ ,λ,µ) ≤ f ( x̄) follows. This is especially
true for λ = λ∗,µ = µ∗ and x̄ = x∗, and therefore q (λ∗,µ∗) ≤ f (x∗) applies (cf. [16],
p.216).

There also exists the term strong duality in this context.
Definition 3.7 (Strong Duality). Let x∗ ∈ Rnopt and λ∗ ∈ Rng , µ∗ ∈ Rnh be the optimal
solutions of the primal problem (OP) and dual problem (DP) respectively. Strong duality is
said to hold for (OP) if and only if

q (λ∗,µ∗) = f (x∗) (3.4)
applies.

If strong duality holds for (OP), a characterization for optimality can be formulated based
on a triple (x ,λ,µ) and the definition of the so-called duality gap

d∗ (x ,λ,µ) := f (x)− q (λ,µ) ,

which must equal 0 for (x ,λ,µ) = (x∗,λ∗,µ∗). Primal-dual interior-point methods, which
are presented in Section 3.1.3.1 for convex programs, takes the duality gap into account.
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3.1.2 Nonlinear Programming

In this section, the functions in (OP) are assumed to be sufficiently smooth. Under these
conditions, (OP) is referred to as a nonlinear program.

Definition 3.8 (Nonlinear program (NLP)). Let f : Rnopt → R, g : Rnopt → Rng and
h: Rnopt → Rnh be twice continuously differentiable. The minimization task

min
x∈Rnopt

f (x)

subject to g(x) = 0,

h(x)≤ 0

(NLP)

is called nonlinear program.

Unlike in global optimization, solving (NLP) is equivalent to finding a local minimizer in
the scope of this work. The so-called Karush-Kuhn-Tucker conditions play a central role in
the following and are formulated based on the differentiability of f , g, and h.

Definition 3.9 (Karush-Kuhn-Tucker (KKT) conditions). Let L : Rnopt × Rng × Rnh → R
denote the Lagrange function of (NLP). Moreover, let x ∈ X , λ ∈ Rng and µ ∈ Rnh

≥0. Then

∇x L (x ,λ,µ) =∇x f (x) +λ⊤∇x g (x) +µ⊤∇xh (x) = 0 (3.5a)
∇λL (x ,λ,µ) = g (x) = 0 (3.5b)
∇µL (x ,λ,µ) = h (x)≤ 0 (3.5c)
L (x ,λ,µ)− f (x) = h (x)⊤µ= 0 (3.5d)

are called Karush-Kuhn-Tucker (KKT) conditions. A triple (x∗,λ∗,µ∗), for which (3.5) holds,
is called a KKT point.

The KKT conditions were published in 1951 and were first known as Kuhn-Tucker condi-
tions [44]. The results were already described by William Karush in 1939 in his master’s
thesis [40], which was not published.
In the following, we will learn under which premise the KKT conditions are the first-order
necessary optimality conditions. A local minimizer must comply with these conditions. For
an unconstrained problem, the KKT conditions imply the necessary optimality conditions
for a local minimizer: The requirement that the gradient of the cost function is 0 is provided
by (3.5a), while the other terms which concern the constraints, as well as (3.5b), (3.5c),
and (3.5d) are omitted. In constrained optimization, feasibility is claimed by (3.5b) and
(3.5c). The last condition (3.5d) is referred to as complementarity. A point that fulfills the
KKT conditions is termed critical but is not necessarily a minimizer. In addition, the con-
straint must possess certain properties known as constraint qualifications (CQ). Sufficient
optimality conditions exist as well and will also be presented. After that, an SQP algorithm
is studied, which uses the smoothness of NLPs to find a critical point.
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3.1.2.1 Optimality Conditions

The following explanations are based on the reference book [33]. Page references lead to
all proofs necessary for this subsection. According to Definition 3.2, a solution x∗ of (NLP)
is considered locally optimal if the objective function f does not decrease in its feasible
neighborhood. In the unconstrained case, the gradient of the objective disappears while
the Hessian is positive semidefinite in x∗, i.e.

∇ f (x∗) = 0 and ∇2 f (x∗)≥ 0.

In the constrained case, it might not be possible to find an equilibrium for ∇ f . Instead,
finding a solution means to determine a point x∗ ∈ X where any infinitesimal step to
another feasible element leads to either growth or no change in the objective. The tangent
cone of X in x∗ contains all feasible directions for these steps.

Definition 3.10 (Tangent cone). Let C ⊆ Rn denote a non-empty set. Then, for an element
y ∈ C,

TC (y) =
�

d ∈ Rn| ∃�yk
	 ⊆ C, ∃{tk} ⊂ R: yk→ y and

�

yk − y
�

/tk→ d for tk↘ 0
	

is called the tangent cone of C in y.

The tangent cone is closed (cf. [33], page 42), which, together with the mean value theo-
rem, proves the following first version of the necessary first-order optimality condition.

Lemma 3.11. Given (NLP) with a non-empty feasible set X , let x∗ denote a local minimizer
of (NLP). Then,

∇ f (x∗)⊤ d ≥ 0

applies for all d ∈ TX (x∗).
Proof. See [33], p. 43.

Lemma 3.11 states that the objective increases in all feasible directions from a local mini-
mizer x∗. Unfortunately, TX (x∗) is rather inconvenient to work with in practice, whereas
the linearized tangent cone is easier to grasp.

Definition 3.12 (Linearized tangent cone). Given a feasible point x ∈ X and the active set
A (x), the set

Tl in (x) :=
�

d ∈ Rnopt : ∇g j(x)
⊤d = 0, j ∈ �1, . . . , ng

	

,∇h⊤i d ≤ 0, i ∈A (x)	 (3.6)

is called linearized tangent cone of X in x .

For a feasible point x ∈ X for which the tangent cone TX (x) and its linearized variant
Tl in (x) coincide, the following term is introduced.
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Definition 3.13 (Abadie constraint qualification). A feasible point x ∈ X is said to comply
with the Abadie constraint qualification if and only if TX (x) = Tl in (x).

With the Abadie CQ and Lemma (3.11), the following first-order necessary optimality con-
dition is stated, which incorporates the KKT conditions from Definition 3.9.

Theorem 3.14 (KKT conditions with Abadie CQ). Let x∗ ∈ Rnopt denote a local minimizer of
(NLP) which complies with the Abadie CQ. Then, Lagrange multipliers λ∗ ∈ Rng and µ∗ ∈ Rnh

exist such that (x∗,λ∗,µ∗) is a KKT point.

Proof. See [33], p. 48.

There exist requirements that are easier to check than the Abadie CQ but imply optimality
like Theorem 3.14. The linear independence constraint qualification is probably the best
known and commonly mentioned condition in this context.

Definition 3.15 (Linear independence constraint qualification (LICQ)). Let x ∈ X be
a feasible point of (NLP) and A (x) be the active set. The point x is said to comply with the
linear independence constraint qualification if and only if the gradient of the equality and
active inequality constraints

∇gi (x) , i = 1, . . . , ng , and ∇hi (x) , i ∈A (x) ,

are linear independent.

Unlike in Theorem 3.14, the uniqueness of the Lagrange multipliers for a given minimizer
is ensured through LICQ.

Theorem 3.16 (KKT conditions with LICQ). Let x∗ ∈ Rnopt denote a local minimizer of
(NLP) which complies with the LICQ. Then unique Lagrange multipliers λ∗ ∈ Rng and µ∗ ∈ Rnh

exist such that (x∗,λ∗,µ∗) is a KKT point.

Proof. See [33], p. 53.

The critical cone is defined to formulate second-order necessary and sufficient optimality
conditions.

Definition 3.17 (Critical cone). Given a KKT point (x∗,λ∗,µ∗) of (NLP), the critical cone is
defined as

Tcrit (x∗,λ∗,µ∗) =
�

d ∈ Tl in (x
∗) : ∇gi (x

∗)⊤ d = 0, i = 1, . . . , ng ,

and ∇hi (x
∗)⊤ d = 0, i = 1, . . . , nh, with µ∗i > 0

	

.

The critical cone is a subset of the linearized tangent cone. It consists of search directions
along which the active set remains unchanged. The following two theorems use the critical
cone and the second-order derivatives of the objective and constraints in Definition 3.8.
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Theorem 3.18 (Second-order necessary optimality conditions). Given a local minimizer
x∗ ∈ X of (NLP) for which LICQ holds, let λ∗ ∈ Rng ,µ∗ ∈ Rnh be the Lagrange multipliers that
lead to a KKT point (x∗,λ∗,µ∗). Let L : Rnopt ×Rng ×Rnh → R denote the Lagrange function of
(NLP). Then,

d⊤∇2
x L (x∗,λ∗,µ∗) d ≥ 0

holds for all d ∈ Tcri t (x∗,λ∗,µ∗).

Proof. See [33], pp. 65-66.

As the last theorem concluding this subsection, the second-order sufficient optimality con-
ditions are stated.

Theorem 3.19 (Second-order sufficient optimality conditions). Let (x∗,λ∗,µ∗) be a KKT
point of (NLP) for which

d⊤∇2
x L (x∗,λ∗,µ∗) d > 0

holds for all d ∈ Tcri t (x∗,λ∗,µ∗) , d ̸= 0. Then x∗ is a strict local minimizer of (NLP).

Proof. See [33], pages 67-68.

3.1.2.2 Sequential Quadratic Programming

The previous subsection has shown the relationship between a KKT point and the optimality
conditions. This section is about identifying critical points. The method presented in this
work is called the sequential quadratic programming (SQP) method. The underlying idea
is to approximate (NLP) quadratically in each iteration and, as the name suggests, to solve
quadratic programs repeatedly. The solution of the quadratic problem of an iteration gives a
direction to approach the sought (local) minimizer. A quadratic program is thereby defined
as follows.

Definition 3.20 (Quadratic program). Let Q ∈ Rnopt×nopt denote a symmetric matrix. More-
over, let Ag ∈ Rng×nopt , bg ∈ Rng , Ah ∈ Rnh×nopt and bh ∈ Rnh . Then,

min
x∈Rn

1
2

x⊤Qx + c⊤x (3.7a)
subject to Ag x − bg = 0 (3.7b)

Ah x − bh ≤ 0 (3.7c)

is called a quadratic program.

We define an equality constrained optimization problem, which we will use to understand
the basic idea of the SQP method:
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min
x∈Rn

f (x) (3.8a)
subject to g (x) = 0 (3.8b)

For (3.8), a critical point is sought, for which the Lagrange function is necessary:

L (x ,λ) = f (x) +λ⊤g (x) (3.9)

The KKT conditions for (3.8) are satisfied if

0=

�∇x L (x ,λ)
g (x)

�

=: F (x ,λ) (3.10)

holds. In other words, a root of the function F : Rnopt ×Rng → Rnopt+ng must be determined.
For this, the Newton method is used, in which a solution is approached iteratively. It yields
the following iteration rule for function F given an initial guess

�

x0,λ0
� ∈ Rnopt ×Rng :

∇(x ,λ)F
�

xk,λk
�

�

xk+1 − xk

λk+1 −λk

�

= −F
�

xk,λk
�

, (3.11)

which is equivalent to

∇(x ,λ)F
�

xk,λk
�

�

xk+1 − xk

λk+1

�

= −F
�

xk,λk
�

+∇(x ,λ)F
�

xk,λk
�

�

0
λk

�

. (3.12)

Regarding (3.9) and (3.10), the Jacobian can be specified as

∇(x ,λ)F
�

xk,λk
�

=

�∇2
x L (x ,λ) ∇x g (x)⊤

∇x g (x) 0

�

. (3.13)

By inserting (3.10) and (3.13) into (3.12),
�∇2

x L (x ,λ) ∇x g (x)⊤

∇x g (x) 0

��

xk+1 − xk

λk+1

�

=

�−∇x f
�

xk
�

−g
�

xk
�

�

(3.14)

is obtained. Introducing substitution variable ∆x := xk+1 − xk, (3.14) represents the KKT
conditions of the equality-constrained quadratic program

min
∆x∈Rnopt

1
2
∆x⊤∇2

x L
�

xk,λk
�

∆x +∇x f
�

xk
�⊤
∆x (3.15a)

subject to g
�

xk
�

+∇x g
�

xk
�⊤

d = 0 (3.15b)

The equality constraints in (3.15b) are the first-order Taylor approximations of the actual
equality constraints in (3.8) at the point xk. In [42], the question is answered of how
to include the inequalities in NLP, but we skip the details at this point. Following one’s
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intuition, the inequality constraints are also linearized and incorporated in the following
quadratic program.

min
∆x∈Rnopt

1
2
∆x⊤∇2

x L
�

xk,λk,µk
�

∆x +∇x f
�

xk
�⊤
∆x (3.16a)

subject to g
�

xk
�

+∇x g
�

xk
�⊤
∆x = 0 (3.16b)

h
�

xk
�

+∇xh
�

xk
�⊤
∆x ≤ 0 (3.16c)

Task (3.16) is solved in every iteration of the local SQP method which is summarized in
Algorithm A.

Algorithm A Local SQP Method
A-1: (Initialization) Choose

�

x0,λ0,µ0
� ∈ Rnopt ×Rng ×Rnh and set k := 0

A-2: (Optimality?) If
�

x k,λk,µk
�

is a KKT point of (NLP): STOP.
A-3: (Compute step) Solve (3.16) to get

�

∆x ,λk+1,µk+1
�

A-4: (Update) Set x k+1 := x k +∆x and increment k := k+ 1, go to step A-2.

If there is more than one KKT point for (3.16) in A-3, the one that is closest to the previous
iterate is chosen. In practice, it is rather difficult to determine the actual closest KKT point.
However, suppose we could do that, then, the following Theorem can be stated.

Theorem 3.21 (Convergence of local SQP method). Let (x∗,λ∗,µ∗) denote a KKT point of
(NLP) for which

i. strict complementarity,

ii. LICQ,

iii. second-order sufficient optimality condition

hold. Then, a neighborhoodN (x∗,λ∗,µ∗) exists such that for any
�

x0,λ0,µ0
� ∈N (x∗,λ∗,µ∗)

the following holds:

i. The sequence
��

xk,λk,µk
�	

generated by Algorithm A converges to (x∗,λ∗,µ∗).

ii. The convergence rate is superlinear.

iii. If ∇2
x f , ∇2

x gi , i = 1, . . . , ng and ∇2
xhi , i = 1, . . . , nh are locally Lipschitz-continuous, the

convergence rate is quadratic.

Proof. See [33], p. 246.

A step size control can be included in A-4 of Algorithm A that scales the step to the next
iterate: xk+1 = xk +σ∆x . The task of finding a suitable σ > 0 is also known as line search,
and it aims to sufficiently reduce the objective function in every iterate. A backtracking step
size control will be presented in Section 3.1.3.1 in the context of a primal-dual interior-
point method that solves convex problems. A detailed treatise of line search methods,
including a convergence study, is given in Chapter 3 of [54].
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3.1.3 Convex Programming

In contrast to NLP, convex programs have stricter requirements for the objective and con-
straints. This section will treat (OP), in which f and the components of h are convex, while
g is affine.

Definition 3.22 (Convex, concave, and affine functions). The scalar function f : Rn→ R
is called

i. convex if and only if for all x , y ∈ Rn and for all α ∈ [0,1] it holds:

f (αx + (1−α) y)≤ α f (x) + (1−α) f (y)

ii. strictly convex if and only if for all x , y ∈ Rn, x ̸= y and for all α ∈ (0,1) it holds:

f (αx + (1−α) y)< α f (x) + (1−α) f (y)

iii. (strictly) concave if and only if − f is (strictly) convex

A vector valued function g : Rn→ Rm is said to be affine if and only if Ag ∈ Rm×n and bg ∈ Rn

exist such that for all x ∈ Rn it holds

g (x) = Ag x + bg .

Based on these properties, we can define a convex program.

Definition 3.23 (Convex program). Let f : Rnopt → R and h: Rnopt → Rnh be convex and
Ag ∈ Rng×nopt , bg ∈ Rng . The minimization task

min
x∈Rnopt

f (x)

subject to Ag x + bg = 0,

h(x)≤ 0

(CP)

is called convex program.

The following two optimization tasks belong to the class of convex programs.

Example 3.24 (Linear and convex quadratic program). Linear and convex quadratic pro-
grams are commonly known optimization tasks which are convex programs.

i. Given a linear objective function f : Rnopt → Rnh , x ↦→ c⊤x and h: Rnopt → Rnh ,
x ↦→ Ah x + bh representing affine inequality constraints, (CP) is a linear program:

min
x∈Rnopt

c⊤x

subject to Ag x + bg = 0,

Ah x + bh ≤ 0,

(LP)

with c ∈ Rnopt , Ag ∈ Rng×nopt , bg ∈ Rng , Ah ∈ Rnh×nopt , and bh ∈ Rnh .
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ii. Given a convex and quadratic objective function f : Rnopt → R, x ↦→ x⊤Qx + c⊤x and
h: Rnopt → Rnh , x ↦→ Ah x+bh representing affine inequality constraints, (CP) is a convex
quadratic program:

min
x∈Rnopt

x⊤Qx + c⊤x

subject to Ag x + bg = 0,

Ah x + bh ≤ 0,

(CQP)

where Q ∈ Rnopt×nopt is symmetric and positive semi-definite, c ∈ Rnopt , Ag ∈ Rng×nopt ,
bg ∈ Rng , Ah ∈ Rnh×nopt , and bh ∈ Rnh .

The quadratic program (3.16) introduced for the SQP algorithm has the same form as
(CQP). The latter requires thematrixQ to be positive semi-definite. This property simplifies
the optimality check, as the Hessian of the Lagrange function of (CQP) is always positive
semi-definite.
The convexity of (CP) is connected to the convexity in a geometric sense, as stated in the
following lemma.
Lemma 3.25 (Convex feasible set). The feasible set X of (CP) is convex.
Proof. Let x , y ∈ X denote feasible points. Any element αx + (1−α) y for α ∈ [0,1] is
feasible because

g (αx + (1−α) y) = Ag (αx + (1−α) y) + bg = α
�

Ag x + bg

�

+ (1−α) �Ag y + bg

�

= 0

due to affinity and
h (αx + (1−α) y)≤ αh (x) + (1−α)h (y)≤ 0

due to convexity hold (see Definition 3.22). Thus, the feasible set X of (CP) is convex
according to Definition 2.1.

The convexity and affinity of the functions in a CP are strong conditions. Analogously
compelling statements can be derived from these assumptions. For example, given a local
minimizer of a CP, it follows that this minimizer is global.
Proposition 3.26 (Global minimizer of CP). Let x∗ ∈ Rnopt be a local minimizer of a (CP).
Then, x∗ is a global minimizer.
Proof. Suppose x̃ ∈ X exists for which

f ( x̃)< f (x∗)

holds. The point α x̃ + (1−α) x∗ for any α ∈ [0, 1] is feasible as shown in Lemma 3.25.
Thus, since f is convex, it follows

f (α x̃ + (1−α) x∗)≤ α f ( x̃) + (1−α) f (x∗)
< α f (x∗) + (1−α) f (x∗) = f (x∗) .

For α→ 0 the point α x̃+(1−α) x∗must be an element of the neighborhoodN (x∗) of x∗ that
exists according to Definition 3.2. This contradicts the fact that x∗ is a local minimizer.
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3.1.3.1 Interior-Point Methods

Interior-point methods were studied and developed in the 1950s, and 1960s [31]. In their
application to linear programs, however, they were always overshadowed by the simplex
method developed by George B. Dantzig in 1947 [69]. In 1984, Karmarkar’s work [39]
triggered a new enthusiasm for interior point methods because it presented a method with
polynomial complexity for solving linear programs. Another milestone was the work [53]
by Nesterov and Nemirovskii in 1994, who were able to prove the polynomial complexity
result for more general convex programs. A more detailed historical overview of interior-
points methods and what impact the developments had to different problem classes can be
found in [69, 60, 36].
In this section, the primal-dual interior-point method of [16] is presented that solves convex
programs (CP) with sufficiently smooth convex objective f and inequalities h. Due to the
differentiability of these functions, the KKT-conditions in Definition 3.9 can be exploited
again. In this method, the root of the residual function rκ : Rnopt ×Rnh ×Rng → Rnopt+nh+ng

with components

rκ (x ,µ,λ) =

⎛

⎝

rdual (x ,µ,λ)
rcent (x ,µ,λ)

rprimal (x ,µ,λ)

⎞

⎠ (3.17)

defined by
rdual (x ,µ,λ) :=∇x f (x) +λ⊤Ag +µ

⊤∇xh (x) , (3.18a)
rcent (x ,µ,λ) := −diag(µ)h (x)−κ−11, (3.18b)

rprimal (x ,λ,µ) := Ag x + bg . (3.18c)
is repeatedly approached with updated κ > 0. If simultaneously hi (x)≤ 0 and µi ≥ 0 for all
i = 1, . . . , nh can be ensured besides rκ (x ,λ,µ) = 0, the KKT conditions (3.5) in a modified
form are fulfilled. The modification happens in the complementarity (3.18b). In compari-
son to (3.5d), the product −hi (x)µi is not 0, but κ−1 which implies that the inequalities are
not active, and the corresponding Lagrange multipliers are positive. The roots of (3.17)
with varying κ are therefore points in the interior of the primal and dual feasible set, which
gives this method its name. With growing κ, it is possible to get arbitrarily close to the
original KKT-conditions and the boundary of the primal and dual feasible set. In order to
approach the root of the residual function rκ, Newton’s method yields a direction to follow.
The actual root is not necessarily computed but a step towards it. As in (3.10) and (3.11),

∇(x ,µ,λ)rκ (x ,µ,λ)

⎛

⎝

∆x
∆µ

∆λ

⎞

⎠= −rκ (x ,µ,λ) (3.19)

determines the direction of the step. Equation (3.19) is equivalent to
⎡

⎢

⎢

⎣

∇2
x f (x) +

nh
∑︁

i=1
∇2

xhi (x) ∇h (x) A⊤g
−diag(µ)∇h (x) −diag(h (x)) 0

Ag 0 0

⎤

⎥

⎥

⎦

⎛

⎝

∆x
∆µ

∆λ

⎞

⎠= −rκ (x ,µ,λ) . (3.20)
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Provided a step size σ > 0, the solution of this linear equation system leads to the new
iterate

(x ,µ,λ) +σ (∆x ,∆µ,∆λ) , (3.21)

which is checked whether it fulfills some termination criteria. The step sizeσ is determined
by a line search. A backtracking step size control is described in Algorithm B.

Algorithm B Backtracking Step Size Control
B-1: (Input)

B-1.1: (Current iterate and search direction)
– (x ,µ,λ) with hi (x)< 0 and µi > 0, i = 1, . . . , nh

– (∆x ,∆µ,∆λ) from (3.20)
B-1.2: (Parameters) α > 0 and β ∈ (0, 1)

B-2: (Largest step size) Determine

σ̄ := sup {σ ∈ [0,1] : µi +σ∆µi ≥ 0, i = 1, . . . , nh}
and set σ := 0.99σ̄

B-3: (Loop) Until

hi (x +∆x)< 0, i = 1, . . . , nh, and ∥rκ (x +σ∆x ,µ+σ∆µ,λ+σ∆λ)∥ ≤ (1−ασ)∥rκ (x ,µ,λ)∥
repeat σ := βσ

Provided the input, in the first instance, the largest step size σ̄ is determined such that
the Lagrange multipliers corresponding to the inequalities remain non-negative. An initial
σ = 0.99σ̄ is chosen that leads to strictly positive components of µ + σ∆µ. In B-3, σ is
repeatedly multiplied by an a priori chosen parameter β ∈ (0, 1) until the inequalities are
strictly fulfilled, and a certain progress towards the root of the residual function (3.17) is
ensured with the next step. The progress is expressed with another parameter α > 0. Since
the primal and dual variables are elements of finite-dimensional space, any norm could
be utilized for the backtracking step size control, as all norms are equivalent under these
circumstances. In case of the Euclidean norm ∥·∥2, typically in practice, α and β are chosen
in the range from 0.01 to 0.1 and 0.3 to 0.8, respectively (cf. [16]).
Algorithm C describes a primal-dual interior-point method and summarizes the specifica-
tions of this section. The algorithm expects primal and dual variables as inputs, which
strictly fulfills the inequalities of the primal and dual problems. Actual primal feasibility is
unnecessary but will be reached in the further progression. Constants ϵfeas and ϵopti are se-
lected to prescribe termination criteria. Both parameters are typically small. Furthermore,
due to the parameter ν, κ successively grows to near the original KKT conditions. As long
as the norm of the residuals rprimal and rdual and the complementarity do not fall below
ϵfeas and ϵopti, κ is updated, and a step towards the root of the adjusted residual function
rκ is performed.
Algorithm C is based on ideas of Newton’s method, as in many applications. The biggest
hurdle lies in the inequality constraints, which are overcome by a suitable step size control
like Algorithm B in the presented method. In other interior-point methods, barrier func-
tions are introduced, which go to infinity if their argument becomes non-negative. If the
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argument is negative, it maps to values that are nearly 0. Each inequality of the optimiza-
tion problem is concatenated with a barrier function and added to the objective function
as a weighted penalty term. Typically, a differentiable barrier φ : R+ → R based on the
logarithm function is chosen with φ(y) = − log (−y). The optimization problem

min
x∈Rnopt

f (x) + κ−1
nh
∑︂

i=1

φ (hi (x))

subject to Ag x + bg = 0

(3.22)

is convex, and for h (x) < 0 sufficiently smooth to apply Newton’s method to determine
KKT points. An approach in which problem (3.22) is sequentially solved with growing κ is
called a primal barrier method.
In interior-point methods for linear and convex quadratic programs, a partitioning of the
search direction (as in C-2.2) into a predictor and corrector step has proven its worth in
practice. The predictor step ensures progress towards a (modified) KKT point while the
corrector step addresses the error due to the linearization as in (3.19). Mehrotra intro-
duced this idea in [51] for linear programs and Nocedal and Wright extended it for convex
quadratic programs (compare [54], pp. 479).

Algorithm C Primal-Dual Interior-Point Method
C-1: (Input)

C-1.1: (Primal and dual variables) x ∈ Rnopt with hi (x)< 0, µi > 0 for i = 1, . . . , nh and λ ∈ Rng

C-1.2: (Parameters) ϵfeas,ϵopti > 0 and ν > 1

C-2: (Loop) Until
∥︁

∥︁rprimal (x ,µ,λ)
∥︁

∥︁≤ ϵfeas, ∥rdual (x ,µ,λ)∥ ≤ ϵfeas and ϑ := −h (x)⊤ µ≤ ϵopti, repeat
C-2.1: (Modification factor) Set κ := νnh/ϑ

C-2.2: (Search direction) Compute primal-dual search direction (∆x ,∆µ,∆λ) according to (3.20)
C-2.3: (Step size control and update)

– Determine step size σ > 0 with Algorithm B
– Set (x ,µ,λ) := (x ,µ,λ) +σ (∆x ,∆µ,∆λ)

3.1.3.2 Convex Programs with Generalized Inequalities

For a long time, mathematicians considered linear and nonlinear programs utterly separate
optimization fields and developed individual solution strategies and analyses for them.
With the progress of inner-point methods in the 1980s, rethinking happened, and linear
and nonlinear convex programs were more and more united. The cone-based inequalities
introduced in works such as [49] in the 1960s were revisited in the course of this.
This section shows the formulation of conic programs, states their optimality conditions and
defines the so-called second-order cone programs. For this purpose, we first define proper
cones.



3.1. Static Optimization 31

Definition 3.27 (Proper cone). A set K ⊆ Rn is called cone if and only if for any y ∈ K,
αy ∈ K holds for all α ≥ 0. Furthermore, a cone K is called proper if the following conditions
are fulfilled:

i. K is convex,

ii. K is closed,

iii. K� ̸= ∅,
iv. y ∈ K and −y ∈ K imply y = 0.

A proper cone induces a partial ordering used in generalized inequalities.

Definition 3.28 (Generalized inequality). Let K ⊆ Rn denote a proper cone and y, z ∈ Rn.
The expressions

y ⪯K z and z ⪰K y

are equivalent to z− y ∈ K and called generalized inequality. The strict generalized inequality
is given by

y ≺K z and z ≻K y

and is equivalent to z − y ∈ K�.

Provided these definitions, we formulate convex programs with generalized inequalities.

Definition 3.29 (Convex program with generalized inequalities). Let f : Rnopt → R and
hi : Rnopt → Rni , i = 1, . . . , nK be convex and Ag ∈ Rng×nopt , bg ∈ Rng . Furthermore, let Ki ⊂ Rni

denote proper cones for all i = 1, . . . , nK . The minimization task

min
x∈Rnopt

f (x)

subject to Ag x + bg = 0

hi(x)⪯Ki
0, i ∈ {1, . . . , nK}

(CPG)

is called convex program with generalized inequalities.

The obvious difference to CP is that the partial ordering induced by proper cones replaces
the “≤”. The optimization task (CPG) is also treated with Lagrange multipliers. The dual
variables corresponding to the generalized inequalities are sought in the respective dual
cones.

Definition 3.30 (Dual and self-dual cone). Let K ⊆ Rn be a cone. The set

K∗ =
�

y ∈ Rn : z⊤ y ≥ 0 for all z ∈ K	

is called dual cone of K. K is called self-dual if and only if K = K∗.
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The positive orthant and second-order cones are examples of self-dual cones. They are of
particular interest because they define the generalized inequalities of second-order cone
programs.

Example 3.31 (Positive orthant and second-order cone). The two sets

i. R+ := {y ∈ R: y ≥ 0}, positive orthant,
ii. Qn+1 := {(y0, y1) ∈ R×Rn : y0 ≥ ∥y1∥2}, the second-order cone,

are self-dual cones1.

Note that (CP) can be regarded as (CPG), in which all Ki are positive orthants. Therefore,
the following constraint qualification and optimality conditions also apply to general convex
programs.

Definition 3.32 (Slater constraint qualification). Consider a convex program with gener-
alized inequalities (CPG). (CPG) is said to fulfill the Slater constraint qualification if and only
if x ∈ Rnopt exists such that hi (x)≺Ki

0 and Ag x + bg = 0.

The Slater constraint qualification is fulfilled if the interior of the feasible set of (CPG) is not
empty. Furthermore, if f and hi, i = 1, . . . , nK are sufficiently smooth, the KKT conditions
are necessary and sufficient for optimality.

Theorem 3.33 (KKT conditions with Slater constraint qualification). Assume that the
Slater’s constraint qualification holds for (CPG) with differentiable functions f and hi, i =
1, . . . , nK . The triple (x∗,λ∗,µ∗) minimizes the convex program with generalized inequalities
if and only if the generalized KKT conditions

∇x f (x∗) + A⊤gλ
∗ +

nK
∑︂

i=1

∇xhi (x
∗)⊤µ∗i =0,

Ag x∗ + bg =0,

hi (x
∗)⪯Ki

0, i = 1, . . . , nK

µ∗i⪰K∗i 0, i = 1, . . . , nK

hi (x
∗)⊤µ∗i =0, i = 1, . . . , nK

(3.23)

hold.

Proof. See [16], pp. 264.

The second-order cone program is an optimization task with a linear objective function and
generalized inequalities induced by either positive orthants or second-order cones.

1In the literature, the set of symmetric positive definite matrices Sn
++ is often introduced as an example

for self-dual cones as well. Sn
++ induces a partial ordering used in semidefinite programs, which represent a

field that is closely related to linear or second-order cone programming following the unifying theory based
on Euclidean Jordan algebra [2, 29].
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Definition 3.34 (Second-order cone program). Let K be the direct product of nK positive
orthants and second-order cones. Furthermore, let c ∈ Rnopt , Ag ∈ Rng×nopt , bg ∈ Rng , Ah ∈
Rnh×nopt and bh ∈ Rnh be given. The minimization task

min
x∈Rnopt

c⊤x

subject to Ag x = bg

Ah x ⪯K bh

(SOCP)

is called second-order cone program

The class of second-order cone programs contains linear programs. However, it covers even
more problem types. As an example, quadratically constrained quadratic programs can also
be transformed into an SOCP.

Example 3.35 (Quadratically constrained quadratic programs). Let Q0, . . . ,Qnh
∈

Rnopt×nopt be symmetric and positive semidefinite, a1, . . . , anh
∈ Rnopt and β1, . . . ,βnh

∈ R. The
quadratically constrained quadratic program

min
x∈Rnopt

x⊤Q0 x + c⊤x

subject to Ag x + bg = 0,

x⊤Q i x + a⊤i x + βi ≤ 0, i ∈ {1, . . . , nh} ,
(QCQP)

is a second-order cone program. Provided the square root Ãi ∈ Rnopt×nopt of Q i, i.e. Q i = Ã⊤i Ãi,
i = 1, . . . , nh, this can be shown with the equivalent formulation of the quadratic inequality

x⊤Q i x + a⊤i x + βi ≤ 0 ⇔
∥︁

∥︁

∥︁

∥︁

1
2

�

1+ a⊤i x + βi

�

Ãi x

∥︁

∥︁

∥︁

∥︁

2

≤ 1
2

�

1− a⊤i x − βi

�

as the first step. The i-th inequality in (QCQP) can be generalized in the following way

Ai x ⪯Ki
bi , with Ai :=

⎡

⎣

1
2 a⊤i
−1

2 a⊤i
−Ãi

⎤

⎦ and bi :=

⎛

⎝

1
2 − 1

2βi
1
2 +

1
2βi

0

⎞

⎠ , (3.24)

where Ki is a second-order cone. In order to “linearize” the objective function of (QCQP)
introduce a new optimization variable τ and the constraint

x⊤Q0 x + c⊤x ≤ τ. (3.25)

Doing the same procedure shown in (3.24) for (3.25) leads to a corresponding A0 and b0

concluding the transformation to an SOCP.

There are interior-point methods that solve SOCPs with an iteration complexity of ⎷n for
problems with n second-order cone constraints [2]. Besides the global solution of con-
vex programs addressed in Proposition 3.26, primal and dual infeasibility and thus, the
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solvability can be certificated for an SOCP based on its self-dual reformulation [71]. Fur-
thermore, an expert initial guess in order to solve an SOCP is not necessary [24]. The
successful application of convex optimization in the aerospace domain, including plane-
tary landing, rendezvous, and docking scenarios, was advanced in [9] among others. An
extensive overview regarding the applications and convexification approaches is given in
[50].

3.1.4 Parametric Sensitivities

In the last two sections, we studied nonlinear and convex programs presented as special-
izations of (OP). Optimality conditions were studied, and methods were presented that
can be applied to both classes of problems, respectively. In this section, we learn about
parametric sensitivity analysis. Once the minimizer x∗ ∈ Rnopt of (OP) is found, the para-
metric sensitivity analysis is concerned with understanding how the solution behaves under
perturbations. For this purpose, another quantity is added in the formulation of an opti-
mization task, which can be regarded as a design parameter or directly as a perturbation.
Definition 3.36 (Perturbed optimization program). Suppose that x ∈ Rnopt , p ∈ Rnp ,
f : Rnopt ×Rnp → R, g : Rnopt ×Rnp → Rng and h: Rnopt ×Rnp → Rnh . Then,

min
x∈Rnopt

f (x , p)

subject to g (x , p) = 0,

h (x , p)≤ 0

(3.26)

is referred to as a perturbed optimization program. Given a reference value p = p0 ∈ Rnp ,
(3.26) is called nominal problem.

If one were able to explicitly specify a function x : Rnp → Rnopt such that x (p) is the solution
of (3.26) for a perturbation p ∈ Rnp , valuable information would be available. However,
to actually evaluate x (·) at p ∈ Rnp , one usually has no choice but to solve the perturbed
optimization program by numerical means. However, if x∗ ∈ Rnopt represents the minimizer
of the nominal problem of (3.26) for p = p0 ∈ Rnp , in addition to x (p0) = x∗, insights about
x (·) and its derivative d

d p x for a neighborhood of p0 can be obtained.
Theorem 3.37 (Implicit functions). Let F : Rn ×Rnp → Rn, (y, p) ↦→ F (y, p) denote a con-
tinuously differentiable function. Assume for a pair (y∗, p0) ∈ Rn × Rnp that F (y∗, p0) = 0
applies. Moreover, assume that the Jacobian d

d y F (y∗, p0) ∈ Rn×n is invertible. Then, open
neighborhoods Ny (y∗) ⊂ Rn and Np (p0) ⊂ Rnp of y∗ and p0 as well as a continuosly differen-
tiable function y : Np (p0)→ Rn exist such that

i. y (p0) = y∗,

ii. F (y (p) , p) = 0 for all p ∈Np (p0).
If F (y, p) = 0 holds for a pair (y, p) ∈Ny (y∗)×Np (p0), y = y (p) follows. Furthermore, the
following holds:

d
d p

y (p0) =
�

d
d y

F (y∗, p0)
�−1 d

d p
F (y∗, p0) ∈ Rn×np . (3.27)
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Proof. A proof can be found on pages 95-98 in [32].

Theorem 3.37 is central in the proof of the subsequent sensitivity theorem. Suppose a
nominal solution (x∗,λ∗,µ∗) of (3.26) for p = p0 is given that fulfills the second-order
necessary conditions of Theorem 3.18. Apply Theorem 3.37 by setting y = (x ,λ,µ) and
defining

F (x ,λ,µ, p) :=

⎛

⎝

∇x L (x ,λ,µ, p)
g(x , p)

diag
�

λ1, . . . ,λnh

�

h (x , p)

⎞

⎠= 0 (3.28)

in (3.27), where L : Rnopt ×Rng ×Rnh ×Rnp → R denotes the Lagrange function of the per-
turbed problem (3.26). The expression (3.28) reflects the KKT conditions from Definition
3.9 with additional dependency on perturbation p. In this context, Theorem 3.37 states
how the nominal solution of a sufficiently smooth perturbed optimization program changes
as a function of the perturbation. These derivatives are called sensitivity derivatives or just
sensitivities. A linear system of equations has to be solved to obtain them. If stronger
conditions are assumed, the following theorem gives even more insights into the implicit
functions of the primary and dual variables of (3.26).
Theorem 3.38 (Sensitivity theorem). Let (x∗,λ∗,µ∗) fulfill the second-order sufficient op-
timality conditions for a nominal solution of (3.26) with p = p0. For active inequality con-
straints hi (x∗, p0) , i ∈A (x∗), µ > 0 is assumed. Moreover, for the objective and the constraint
functions of (3.26), suppose that

i. f , g, h are twice continuously differentiable subject to x in a neighborhood of x∗

ii. ∇x f ,∇x g,∇xh as well as g, h are continuously differentiable subject to p in a neighbor-
hood of p0.

Then, a neighborhood Np (p0) of p0 for continuously differentiable functions x : Np (p0) →
Rnopt , λ: Np (p0)→ Rng and µ: Np (p0)→ Rnh such that

i. x (p0) = x∗, λ (p0) = λ∗, µ (p0) = µ∗

ii. the active set of a perturbed solution remains the same as the nominal

iii. LICQ holds in x (p)

iv. for all p ∈ Np (p0) the triple (x (p) ,λ (p) ,µ (p)) fulfills the second-order sufficient opti-
mality conditions with strict complementarity.

Proof. See [30, 19].

The sensitivity derivatives can be determined based on the following corollary.
Corollary 3.39 (Sensitivity derivative of optimal solution). Consider the same assump-
tions as in Theorem 3.38. The linear equations yield
⎛

⎝

∇2
x L ∇x g⊤ ∇xh⊤

∇x g 0 0
diag(µ)∇xh 0 diag(h)

⎞

⎠

⎛

⎜

⎝

d x
d p (p0)
dλ
d p (p0)
dµ
d p (p0)

⎞

⎟

⎠
= −
⎛

⎝

∇x p L
∇p g

diag(µ)∇ph

⎞

⎠ (3.29)
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the sensitivity derivative of the optimal solution.

Proof. Set y = (x ,λ,µ), and use (3.28) to derive from (3.27).

The derivatives of the objective function and the constraints can also be calculated subject
to the perturbation. The objective function is special because its second-order sensitivity
derivative can be determined.

Theorem 3.40 (First- and second-order sensitivity derivative of objective under gen-
eral perturbations). Consider the same assumptions as in Theorem 3.38. Provided that the
objective function f and the constraints g and h are twice continuously differentiable with
respect to perturbation p, the first- and second-order sensitivity derivatives of the objective
function f are given by

d f
d p
(p0) =∇p L

d2 f
d p2

(p0) = 2
d x
d p
(p0)
⊤∇x p L +

d x
d p
(p0)
⊤∇2

x L
d x
d p
(p0) +∇2

p L

Proof. See [19], pp. 84-86.

From the last theorem, a relation between the sensitivity derivatives of the objective func-
tion and the Lagrange multipliers can be derived for constant perturbations.

Corollary 3.41 (First- and second-order sensitivity derivative of objective under con-
stantly perturbed constraints). Let (x∗,λ∗,µ∗) denote the nominal solution of the perturbed
optimization program

min
x

f (x) (3.30a)
subject to gi (x) = qi , i = 1, . . . , ng (3.30b)

hi (x)≤ qi+ng
, i = 1, . . . , nh (3.30c)

with nominal perturbation q = q0. Then, it holds

i. ∂
∂ qi

f (x∗, q0) = −λ∗i for i = 1, . . . , ng ,

ii. ∂
∂ qi+ng

f (x∗, q0) = −µ∗i for i = 1, . . . , nh.

The second-order sensitivity derivatives are given by

i. ∂ 2

∂ q j∂ qi
f (x∗, q0) = − ∂∂ q j

λ∗i for i, j = 1, . . . , ng ,

ii. ∂ 2

∂ q j+ng ∂ qi+ng
f (x∗, q0) = − ∂

∂ q j+ng
µ∗i for i, j = 1, . . . , nh.

Proof. See [19], p. 94.

With the obtained knowledge about the parametric sensitivity derivatives of the primary
and dual optimization variables as well as the objective function, we can estimate the so-
lution (x (p) ,λ (p) ,µ (p)) and objective value f (p) of the perturbed optimization task. For



3.2. Dynamic Optimization 37

this purpose, first-order Taylor expansions for the quantities are considered as proposed in
[19]:

x (p)≈ x (p0) +
d

d p
x (p0) (p− p0) (3.31)

λ (p)≈ λ (p0) +
d

d p
λ (p0) (p− p0) (3.32)

µ (p)≈ µ (p0) +
d

d p
µ (p0) (p− p0) (3.33)

In the special case of a sufficiently smooth objective function, a second-order approximation
is possible:

f (x(p), p)≈ f (x∗, p0) +
d

d p
f (x∗, p0) (p− p0)

+
1
2
(p− p0)

⊤ d2

d p2
f (x∗, p0) (p− p0)

(3.34)

3.2 Dynamic Optimization

The theory of optimal control arose from the calculus of variations, in which many
renowned mathematicians participated (cf. [35]). They were challenged by Johann
Bernoulli in 1696 with the so-called brachistochrone problem, in which a curve is sought
between two points in the vertical plane [55]. On this curve, a (frictionless) ball is sup-
posed to travel from a starting point to an end point in the shortest possible time by gravity
alone.
After the Second World War, at the beginning of the Cold War, mathematicians from the
East and the West independently developed solution strategies for similar problems in a
military context, such as the minimum time interception problems for fighter aircraft [59].
The proof of the maximum principle, which was achieved by the group around Lev Semy-
onovich Pontryagin in the 1950s [58], finally established the mathematical field of optimal
control. In the early 1960s, the field of optimal control blossomed with the arrival of the
computer [63]. The latter successfully contributed to the computation of trajectories in the
aerospace domain.

3.2.1 Formulation of Optimal Control Problems

One aims to find the optimal procedure to influence typically physical quantities subject to
their dynamic behavior and context-dependent restraints by formulating an optimal con-
trol problem. The process happens in a time interval

�

t0, t f

�

. The said quantities are called
states, while the means to regulate them are termed controls. Both are expressed as func-
tions of time:

x :
�

t0, t f

�→ Rnx , t ↦→ �x 1 (t) , . . . , x nx
(t)
�⊤
=: x (t) (3.35)
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and u :
�

t0, t f

�→ Rnu , t ↦→ �u1 (t) , . . . , unu
(t)
�⊤
=: u (t) . (3.36)

The state function x shall comply with the system dynamic that is a mathematical model
based on the real-world behavior of the quantities.
Definition 3.42 (System dynamic). Let fdyn : Rnx ×Rnu ×Rnχ × �t0, t f

�→ Rnx be a contin-
uous and partially integrable function with regard to x (t) and u (t). The first-order ordinary
differential equation system

ẋ (t) = fdyn (x (t) , u (t) ,χ, t) for t ∈ �t0, t f

�

(3.37)

is called system dynamic. The system dynamic is called autonomous if fdyn does not directly
depend on time t. In this case, by redefining fdyn : Rnx ×Rnu×Rnχ → Rnx , (3.37) can be stated
as

ẋ (t) = fdyn (x (t) , u (t) ,χ) for t ∈ �t0, t f

�

(3.38)

In the definition of the system dynamic, a time-independent vector χ is included to adjust
a more general model. The components in χ constitute the means to configure the optimal
control problem overall. We do not need to separately regard the time-independent quan-
tities in the notation in the following because they may be considered states that do not
change over time. For this purpose, the state vector and the dynamic system are extended
so that (3.37) becomes
�

ẋ (t)
χ̇ (t)

�

=

�

fdyn (x (t) , u (t) ,χ, t)
0

�

for t ∈ �t0, t f

�

(3.39)

with χ (·) ≡ χ. In a similar way, we remove the direct time dependency of fdyn by consid-
ering t as a state with ṫ ≡ 1. We will continue using a notation of an autonomous setting
with no time-independent variables.
Definition 3.43 (Boundary conditions). Let Ψ : Rnx ×Rnx → RnΨ be continuously differen-
tiable with regard to x (t0) and x

�

t f

�

. The equation

Ψ
�

x (t0) , x
�

t f

��

= 0 (3.40)

is called boundary conditions.

Typically, the states do not reach infinite magnitudes or shall avoid areas of the state space
in an application. Furthermore, limits to control capabilities may exist due to resources in
the real world. These conditions are incorporated into the optimal control problem as path
constraints.
Definition 3.44 (Path constraints). Let C : Rnx ×Rnu → RnC be a continuously differentiable
function. The componentwise inequalities

C (x (t) , u (t))≤ 0 for t ∈ �t0, t f

�

(3.41)

are called path constraints.
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With Definitions 3.42, 3.43, and 3.44, the feasibility of states x and controls u are specified.
It remains to provide a cost functional to rate x and u.

Definition 3.45 (Cost functional). Let f : Rnx ×Rnx → R and l : Rnx ×Rnu → R be continu-
ously partially differentiable functions with regard to x and u. The term

J [x , u] = f
�

x (t0) , x
�

t f

��

+

∫︂ t f

t0

l (x (t) , u (t))d t (3.42)

is called cost functional.

With the necessary elements set up, an optimal control problem can be defined.

Definition 3.46 (Optimal control problem). Assume the functions fdyn : Rnx × Rnu →
Rnx ,Ψ : Rnx × Rnx → RnΨ , C : Rnx × Rnx → RnC , f : Rnx × Rnx → R, and l : Rnx × Rnu → R
are defined as in Definitions 3.42, 3.43, 3.44, and 3.45 with an autonomous system dynamic
with no time-independent variables. The minimization task

min
x ,u

f
�

x (t0) , x
�

t f

��

+

∫︂ t f

t0

l (x (t) , u (t))d t

subject to ẋ (t) = fdyn (x (t), u(t)) ,

Ψ
�

x (t0) , x
�

t f

��

= 0,

C (x (t) , u (t))≤ 0, for t ∈ �t0, t f

�

(OCP)

to find continuous and piecewise continuously differentiable states x :
�

t0, t f

�→ Rnx and con-
tinuous controls u :

�

t0, t f

�→ Rnu is called optimal control problem.

At first sight, (OCP) seems to be restricted to processes with fixed time intervals only.
However, by introducing a new time variable τ ∈ [0, 1] and the transformation

t = t0 +τ
�

t f − t0

�

,

problems with free time can be reformulated to have a fixed time frame. The actual in-
terval bounds t0 and t f are considered as static variables and are optimized in the solving
procedure.
There are three formulations commonly used for (OCP) differing in the terms of the cost
functional considered as 0. An OCP is called a

Bolza problem if f ̸≡ 0 and l ̸≡ 0,

Mayer problem if f ̸≡ 0 and l ≡ 0,

Lagrange problem if f ≡ 0 and l ̸≡ 0.

These three forms can be equivalently reformulated into each other. Hereafter, we can
make the assumption f ̸≡ 0 and l ≡ 0 for (OCP) without further restrictions. The original
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Bolza problem is transformed into a Mayer problem through the definition of an additional
state z :
�

t0, t f

�→ R. The system dynamic is supplemented with

ż (t) = l (x (t) , u (t))

while in the boundary conditions

z (t0) = 0

is included. Subsequently, the integral term can be replaced by the summand z
�

t f

�

. A
reformulation from a Lagrange to a Mayer problem is performed accordingly. Detailed
transformation between the problem types are presented in [66]. In the following, we will
assume (OCP) as a Mayer problem because it simplifies the notation and explanation of
the transcription of an optimal control problem.

3.2.2 Transcription to Static Optimization Problem

The process of solving an optimal control problem is categorized in direct and indirect meth-
ods. In indirect methods, Euler-Lagrange equations constitute necessary optimality condi-
tions for (OCP), which depends on the definition of the Hamiltonian function and time-
dependent adjoint variables. Evaluating these conditions leads to a two-point boundary
value problem. Pontryagin’s maximum principle states that the control u must be chosen
such that the Hamiltonian is optimized. Indirect methods require advanced knowledge of
optimal control theory to derive the surrogate problem. Furthermore, the adjoint variables
must be estimated, which is not intuitive because they do not represent physical quantities.
Therefore, indirect methods are considered rather difficult and not robust [15].
In contrast, direct methods are a general approach to treat (OCP). In the first step, (OCP)
is discretized, and then, static optimization techniques are applied as presented in Section
3.1. The discretization procedure is called transcription. In the following, we will study
the direct approach of solving (OCP) based on single-step methods are regarded. For other
discretization approaches, it is referred to Section 4.5 in [15] and [62].
Definition 3.47 (Time grid). Given a time interval

�

t0, t f

�

and the desired number of grid
points 1< ndis ∈ N, the set of time points t i ∈

�

t0, t f

�

, i = 1, . . . , ndis with

t0 =: t1 < t2 < · · ·< tndis := t f

is called time grid. The time points in a time grid are not necessarily equidistant. Notationwise,

∆i := t i+1 − t i , i = 1, . . . , ndis − 1

stands for the respective time increment.

Instead of searching for functions x and u, the respective function values at the points of
a provided time grid shall be approximated, hence

x [i] ≈ x (t i) and u[i] ≈ u(t i) (3.43)
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for i = 1, . . . , ndis. In this manner, optimization variables

x :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x [1]

u[1]
...

x [ndis]

u[ndis]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ Rnopt , nopt := (nx + nu) · ndis (3.44)

are allocated in a finite dimensional space. Single-step methods approximate the solution
of an ordinary differential equation (or at this point a system dynamic) in the following
way:

x [i+1] = x [i] +∆i ·Φ
�

x [i], x [i+1], u[i], u[i+1]
�

(3.45)
for i = 1, . . . , ndis − 1. Unlike multi-step methods, function Φ only depends on states and
controls at those two time points connected by the time increment ∆i. The explicit Euler
method

Φ
�

x [i], x [i+1], u[i], u[i+1]
�

:= fdyn
�

x [i], u[i]
�

and the implicit trapezoidal method

Φ
�

x [i], x [i+1], u[i], u[i+1]
�

:=
1
2

�

fdyn
�

x [i], u[i]
�

+ fdyn
�

x [i+1], u[i+1]
��

are well known examples in this regard. The approximations (3.43) ought to fulfill the
remaining constraints of (OCP) and act as arguments for the cost functional.
Definition 3.48 (Discretized optimal control problem). Let f : Rnx ×Rnx → R, Ψ : Rnx ×
Rnx → RnΨ , and C : Rnx×Rnu → RnC denote the cost functional, boundary conditions, and path
constraints of (OCP) as a Mayer problem, and let Φ be an appropriate single-step expression
to approximate its autonomous system dynamic. Furthermore, let

�

t1, . . . , tndis

	

denote a time
grid for
�

t0, t f

�

with time increments ∆1, . . . ,∆ndis−1. The minimization task

min
x∈Rnopt

f
�

x [1], x [ndis]
�

subject to x [i+1] = x [i] +∆i ·Φ
�

x [i], x [i+1], u[i], u[i+1]
�

, i = 1, . . . , ndis − 1,

Ψ
�

x [1], x [ndis]
�

= 0,

C
�

x [i], u[i]
�≤ 0, i = 1, . . . , ndis

(3.46)

to find x ∈ Rnopt as defined in (3.44) is called discretized optimal control problem.

The static optimization task (3.46) has the same form as (OP), and is said to be transcribed.
The number of equality constraints adds up to ng = (ndis − 1) · nx + nΨ and nh = ndis · nC is
the number of inequalities.
The procedure described in this section is only an example of a transcription of an optimal
control problem. Other integration schemes may be applied as well. Thus, the transfor-
mation of a Bolza problem into a Mayer problem does not only simplify the illustrations
in this section. It is also recommended to perform consistent integration both in the cost
functional and while treating the system dynamic.
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Chapter 4

Algorithms for Set Approximation

Relying on the foundation we have laid in the previous chapters, we formulate algorithms
to approximate geometric bodies in the following. They may illustrate dynamically con-
strained sets like the reachable set. In the following, nS ∈ N denotes the dimension of some
sought-after set S ⊂ RnS . An underlying dynamic feasibility problem, the constraints of an
OCP, is assumed to be discretized according to the transcription approach presented in Sec-
tion 3.2 about dynamic optimization. A feasibility problem is given by a pair of functions
(g, h) representing the equalities and inequalities in (OP). As introduced in Definition 3.1,
X denotes the feasible set and is specified through (g, h). With regard to Definition 3.23 of
convex programs, the feasibility problem is called convex if g is affine and h is convex.
As x ∈ X represents states and controls at every time point of the discretization, we are
interested in certain components of the optimization vector. In the forward reachability
context, we only consider that part of x ∈ Rnopt that is assumed to be x

�

t f

� ∈ Rnx , where
t f denotes the final time of the process. The final state vector may be further constrained,
or some states are not of interest such that, in turn, only certain components of it need to
be taken into account. Therefore, z ∈ RnS is introduced to refer to those components of
x ∈ Rnopt that are relevant for a given application scenario. The vector z implies a projection

P x = z, (4.1)

where P ∈ RnS×nopt has full rank and standard unit vectors as rows. Accordingly, the relation
between S and the feasible set X based on (g, h) is expressed through the set evaluation
with projection P

PX := {P x : x ∈ X }= S.

Based on the relation between X and S, z ∈ RnS is called feasible if z ∈ S.
This chapter consists of four sections. In the first one, simple geometries are introduced as
examples to apply the algorithms presented in the following passage. Then, every approach
is showcased in a dedicated section. In each, the algorithms are described and illustrated
in the first instance. All of them are optimization-based, and depending on the solved task
type, different properties may be assigned to the results. These properties are elaborated
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on in a detailed and mathematically sound manner. Finally, each section concludes with a
discussion showing the example geometries’ approximations, and strengths andweaknesses
are explained.

X

S
P

Figure 4.1: Illustration of PX = S

4.1 Application on Simple Geometries

We first define feasibility problems whose feasible sets represent geometric bodies that
serve as application examples. Apart from the dynamic Rayleigh problem, the regarded
sets are higher-dimensional generalizations of the ellipse and the rectangular about which
properties such as volume are known.
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Figure 4.2: A three-dimensional ellipsoid

Definition 4.1 (Static ellipsoid feasibility problem). Let n ∈ N denote the dimension of the
set. Furthermore, let α1, . . . ,αn ∈ R+ \ {0} denote positive real scalars. Given the inequality

n
∑︂

i=1

x2
i

α2
i

≤ 1, (E)

the set SE (n) := {x ∈ Rn : x complies with (E)} describes an ellipsoid.
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The ellipsoid has a smooth surface and is convex, as illustrated in Figure 4.2 showing a
three-dimensional example. To bemore precise, an ellipsoid is strictly convex, whichmeans
that the line connecting two points in the set lies entirely inside if the two end points are
omitted. In other words, the boundary of the ellipsoid does not contain a straight line. The
volume of the n-dimensional ellipsoid is

vol(SE (n)) =
π

n
2

Γ
� n

2 + 1
�

n
∏︂

i=1

αi ,

where Γ denotes the gamma-function (cf. [17], p. 478).

Figure 4.3: A three-dimensional box

Definition 4.2 (Static box feasibility problem). Let n ∈ N denote the dimension of the set.
Furthermore, let β1, . . . ,βn > 0 denote positive real scalars. Given the inequalities

−βi ≤ x i ≤ βi , i = 1, . . . , n (B)
the set SB (n) := {x ∈ Rn : x complies with (B)} describes a box.

The box is a convex polytope and has sharp transitions from one facet to another. This
can be seen in Figure 4.3, which illustrates a three-dimensional cube. The volume of the
n-dimensional box is

vol(SB (n)) = 2n
n
∏︂

i=1

βi .

As a convex polytope, the n-dimensional box is completely defined, when its 2n corners or
vertices are known. 2n inequalities suffice to state its H-description.
Definition 4.3 (Dynamic Rayleigh feasibility problem). Let [0, 2.5] denote the process
time interval. For state x : [0, 2.5]→ R2 and control u : [0,2.5]→ R,

ẋ (t) =

�

x 2 (t)
−x 1 (t) + x 2 (t)

�

1.4− 0.14x 2
2

�

+ 4u (t)

�

,

u (t) ∈ [−1,1] , t ∈ [0, 2.5] ,

x (0) =

�−5
−5

�

(R)
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describes the Rayleigh problem. The reachable set of the Rayleigh problem is defined as
SR :=
�

x ∈ R2 : ∃x , u which complies with (R) with x = x (2.5)
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Figure 4.4: Reachable set of the Rayleigh problem

The Rayleigh problem originates from an optimal control problem of an electric circuit
[12]. Unlike the other two examples, the sought set of the Rayleigh problem is subject to
dynamics. Figure 4.4 shows that this set is not convex.

4.2 Grid Approach

The grid approach is a versatile method for understanding the sought-after set S that does
not need to be convex or even connected. In this approach, a grid is defined over an area
where S is roughly assumed. All grid points are then evaluated whether they are inside the
set. This is visualized in Figure 4.5. Some grid points are inside S and marked blue. For
those grid points, which are not inside, the respective closest element in S is found (orange
dots).
To apply this method, we first need to define an n-dimensional grid.

Definition 4.4 (n-dimensional grid). Given intervals
�

γ0,i ,γ f ,i

�

, i = 1, . . . , n, and the num-
ber of discretizations 1< ndis,i ∈ N for the respective interval, the subsets of discrete points

Γi :=
¦

γ1,i ,γ2,i , . . . ,γndis,i,i

©

⊂ �γ0,i ,γ f ,i

�

,

with increasing values

γ0,i =: γ1,i < γ2,i <, . . . ,< γndis,i,i := γ f ,i ,

defines a discretization of the i-th interval. The set

G :=
�

(γ1, . . . ,γn)
⊤ ∈ Rn : γi ∈ Γi
	

(4.2)

is called an n-dimensional grid. G consists of nG :=
∏︁n

i=1 ndis,i elements.
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S

G

Figure 4.5: Grid G laid over the area where the sought set S is

The closest feasible point z ∈ S is searched for each grid point. For this purpose, the
following optimization problem is solved repeatedly, differing in the targeted grid point.
Definition 4.5 (Grid task). Let (g, h) denote a feasibility problem. Given a point pG ∈ RnS ,
the minimization task

min
x∈Rnopt

1
2
∥z − pG∥22

subject to g (x) = 0,

h (x)≤ 0

(G
�

pG
�

)

with z = P x as in (4.1), is called a grid task.

If the feasibility problem in G
�

pG
�

is convex, then G
�

pG
�

is a CP. Furthermore, following
Example 3.35, we can transform a convex grid task into a SOCP.

Algorithm D Grid Approach
D-1: (Input)

D-1.1: (Feasibility problem) Provide feasibility problem (g, h)
D-1.2: (Grid) Provide a suitable nS -dimensional grid G.

D-2: (Optimization) Compute G
�

pG

�

for all pG ∈ G.
D-3: (Output)

D-3.1: (Results of optimizations) From grid task G
�

pG

�

, pG ∈ G
– Primal variables x∗ and point z∗ ∈ S
– Parametric sensitivities ∇pG x

�

pG

�

D-3.2: (Exclusion description) Set E :=
��

z∗, pG

� ∈ S × G : z∗ results from G
�

pG

�

with ∥z∗ − pG∥2 > 0
	

With these definitions, we may describe the algorithm coherently. The sequence of steps
in the grid approach is elaborated in Algorithm D. For a grid point pG ∈ G, for which the
objective function in G

�

pG
�

cannot be minimized to 0, a neighborhood can be specified
that does not intersect with S. This is explained in more details in Section 4.2.1. Thus,
they represent an output argument in Algorithm D, stated in D-3.2. A byproduct of the
optimizations performed in D-2 are the parametric sensitivities. With ∇pG x

�

pG
�

from grid
task G
�

pG
�

for some pG , first-order information is available that describes how the solution
x∗ behaves if the grid point pG is slightly perturbed.
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4.2.1 Output Properties

The outcome of the grid approach for feasibility problem (g, h) and an nS -dimensional grid
G is examined. Based on the results of the optimization in D-3.1, an approximate solution
x̂ of a grid optimization task G(p̂) for a p̂ ∈ RnS can be obtained by

x̂ = x∗ +∇pG x
�

pG
�⊤ �

p̂− pG
�

with pG = argmin
p∈G

∥p− p̂∥2 ,
(4.3)

where x∗ denotes the minimizer of G
�

pG
�

. This applies the idea of the Taylor expansion as
in (3.31), while the grid serves as a look-up to find the closest expansion point.
The focus in the following is placed on the outcome stated in D-3.2. If the distance between
a grid point and the nearest admissible point in the set S cannot be minimized to 0, there
exists a neighborhood around the grid point that does not intersect S.
Lemma 4.6 (Excluded neighborhood). Let x∗ ∈ Rnopt minimize G

�

pG
�

for pG ∈ RnS . Define
ϵ := ∥z∗ − pG∥2. Then B�ϵ

�

pG
�∩ S = ∅.

Proof. If B�ϵ
�

pG
� ∩ S ̸= ∅, then y ∈ RnS exists for which y ∈ B�ϵ

�

pG
�

and y ∈ S applies.
Consequently, ∥y − pG∥2 < ϵ holds contradicting that x∗ minimizes G

�

pG
�

.

Building on Lemma 4.6 and furthermore, assuming that S is convex, a supporting hyper-
plane can be determined.
Theorem 4.7 (Supporting hyperplane). Assume that the sought-after set S ⊂ RnS is convex
and compact. Let x∗ ∈ Rnopt minimize G

�

pG
�

for pG ∈ RnS with ϵ := ∥z∗ − pG∥2 > 0. Then, z∗

is a boundary point of S and

a :=
z∗ − pG
∥z∗ − pG∥2

(4.4)

is a normal of a supporting hyperplane to S at z∗ that separates S from B�ϵ
�

pG
�

.
Proof. Two statements need to be proved:

i. a⊤ y < a⊤z∗ for all y ∈ B�ϵ
�

pG
�

ii. a⊤ y ≥ a⊤z∗ for all y ∈ S
To show i. choose an arbitrary y ∈ B�ϵ

�

pG
�

for which
∥︁

∥︁y − pG
∥︁

∥︁

2 < ϵ (4.5)

holds. The inequality in i. is equivalent to

a⊤
�

y − pG
�

< a⊤
�

z∗ − pG
�

(4.6)

after subtracting a⊤pG from both sides. The relation (4.6) is obtained by applying the
Cauchy-Schwarz (C.S.) inequality (cf. [17], p. 31) among others:

a⊤
�

y − pG
� C.S.≤ ∥a∥2
∥︁

∥︁y − pG
∥︁

∥︁

2
(4.4)
=
∥︁

∥︁y − pG
∥︁

∥︁

2

(4.5)
< ϵ
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ϵ = ∥z∗ − pG∥2 =
�

z∗ − pG
�⊤ �

z∗ − pG
�

∥z∗ − pG∥2
(4.4)
= a⊤
�

z∗ − pG
�

For ii., assume the opposite. Suppose there exists a y ∈ S such that a⊤ y < a⊤z∗ holds,
implying y ̸= z∗. Then equivalently,

ϵa⊤ (y − z∗)< 0 (4.7)

applies. Because of Lemma 4.6, y ̸∈ B�ϵ
�

pG
�

and thus,
∥︁

∥︁y − pG
∥︁

∥︁

2 ≥ ϵ (4.8)

hold. Since S is convex, ȳ := z∗ + α (y − z∗) with α := − ϵa⊤(y−z∗)
∥y−z∗∥22

is an element of S if
0≤ α≤ 1. However,
∥︁

∥︁ ȳ − pG
∥︁

∥︁

2
2 =
∥︁

∥︁z∗ − pG +α (y − z∗)
∥︁

∥︁

2
2

=
∥︁

∥︁z∗ − pG
∥︁

∥︁

2
2 + 2α
�

z∗ − pG
�⊤
(y − z∗) +α2 ∥y − z∗∥22

= ϵ2 − 2ϵ2

�

a⊤ (y − z∗)
�2

∥y − z∗∥22
+ ϵ2

�

a⊤ (y − z∗)
�2 ∥y − z∗∥22

∥y − z∗∥42

= ϵ2 − ϵ2

�

a⊤ (y − z∗)
�2

∥y − z∗∥22
< ϵ2 (4.9)

and, consequently,
∥︁

∥︁ ȳ − pG
∥︁

∥︁< ϵ hold contradicting Lemma 4.6.
It remains to show 0≤ α≤ 1. From (4.7), α > 0 follows directly. On the other hand, α≤ 1
is equivalent to

−ϵa⊤ (y − z∗)− ∥y − z∗∥22 ≤ 0. (4.10)

Insert the definitions of a and ϵ into the left hand side of (4.10) and derive
�

pG − z∗
�⊤
(y − z∗)− (y − z∗)⊤ (y − z∗)

=
�

pG − y
�⊤
(y − z∗)

=
�

pG − y
�⊤ �

y − pG + pG − z∗
�

=
�

pG − y
�⊤ �

pG − z∗
�−
∥︁

∥︁y − pG
∥︁

∥︁

2
2

C.S.≤
∥︁

∥︁pG − y
∥︁

∥︁

∥︁

∥︁pG − z∗
∥︁

∥︁−
∥︁

∥︁y − pG
∥︁

∥︁

2
2 = ϵ
∥︁

∥︁y − pG
∥︁

∥︁−
∥︁

∥︁y − pG
∥︁

∥︁

2
2

(4.8)≤ 0

Thus, (4.10) and, consequently, α≤ 1 are fulfilled.

Summarizing, in case the feasibility problem (g, h) leads to a convex S, and Algorithm D
yields a non-empty E , a superset of S is given by
¨

y ∈ RnS :
�

z∗−pG
∥z∗−pG∥2
�⊤

y ≥
�

z∗−pG
∥z∗−pG∥2
�⊤

z∗, for all
�

z∗, pG
� ∈ E
«

⊇ S (4.11)
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applying Theorem 4.7. Independent of the shape of S,
⋃︂

(z∗,pG)∈E
B�∥z∗−pG∥2

�

pG
�∩ S = ∅

holds because of Lemma 4.6.

4.2.2 Discussion

The greatest strength of the grid approach is that it can be used on any feasibility problem
(g, h) as long as the feasibility set and consequently S is not empty. The versatility is evident
in the plots of Figure 4.6, illustrating the results for the examples in Section 4.1. Regardless
of the shape of the set to be reconstructed, it can be represented discretely by a point cloud.
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Figure 4.6: Reconstruction of example sets using the grid approach

The approximate location and extent of S must be estimated in advance to design and
provide a suitable grid as input for Algorithm D. The fewer details are known, the smaller
the area of S that the resulting point cloud can cover. A preliminary analysis is therefore
essential. In the process, the appropriate density of the grid points also has to be assessed.
The density correlates with the number of optimizations. The largest computational effort
is due to the optimizations in D-2. However, they can be performed in parallel because
there are no dependencies among them. In the grid task G

�

pG
�

, there are no additional
constraints besides the feasibility problem (g, h) because the grid point pG is integrated
into the objective function. The grid optimization task can be reformulated as an SOCP but
this comes with an additional optimization variable and nS + 1-dimensional second-order
cone constraint.
Since similar problems are solved in D-2, a warm start of the solver may be considered.
During a warm start, feasible variables are provided from the previous optimization run.
Furthermore, no newmemory allocation is needed because problem specific details like the
sparsity remains unchanged. In this manner, convergence of NLPs are achieved faster in
practice. It is advisable to choose the next grid point in the immediate vicinity of the last
one for a re-parametrization of the grid task of a solver thread in order to benefit from a
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superlinear or quadratic convergence rate through a warm start in the best case (compare
Theorem 3.21).
If S is convex, a non-empty output argument E from D-3.2 implies an over-approximation
of the sought set S defined in (4.11). This superset can be used to rule out elements in the
RnS that are certainly not in S. Generally, in order to check whether an element p̂ ∈ RnS is
in S, it cannot be avoided to solve G(p̂). There is the option here to use the approximation
x̂ defined in (4.3) as an initial guess for the optimization to aim for a good convergence
behavior. Regarding S in a dynamic context, the respective minimizer x∗ of G

�

pG
�

for each
pG ∈ G represents a trajectory and a control. The output stated in D-3.1 therefore forms a
list of theoretically actionable options with ready trajectories and controls.
Appropriate computational resources must be made available to obtain a dense point cloud.
This is especially necessary for higher dimensional sets because with uniform axis dis-
cretization, the number of grid points increases exponentially with each dimension.

4.3 Online Convex Hull Approach

The online convex hull approach approximates convex sets S through two polytopes. Both
approach the shape of the sought-after set over time. Successively, new boundary points
of S are determined, which are included in the set of vertices of one polytope Pinner. The
other, Pouter, is specified by the halfspaces that respectively contain S and are given through
the supporting hyperplanes at the boundary points. Throughout the process, the relation
Pinner ⊆ S ⊆ Pouter holds. The course of the algorithm is hinted at in Figure 4.7. While the
inner polytope grows with each new boundary point, the outer one shrinks because the
intersection of more and more halfspaces is formed. The sequential progression of adding
vertices to Pinner or intersecting halfspaces of Pouter is illustrated with fading colors.

S

Pinner

Pouter

Figure 4.7: The online convex hull’s subset and superset of S

The boundary points, which significantly influence the shape of both polytopes, are ob-
tained by solving optimization tasks. In an optimization run, an element z ∈ S is deter-
mined, which is the highest point above a hyperplane that goes through the origin. The
hyperplane and also the definition of above is given through a vector d ∈ RnS .
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Definition 4.8 (Online convex hull task). Let (g, h) denote a feasibility problem. Given a
direction d ∈ RnS , the minimization task

min
x∈Rnopt

− d⊤z

subject to g (x) = 0

h (x)≤ 0

(OCH(d))

with z = P x as in (4.1), is called an online convex hull task.

The objective of an online convex hull task is linear. Provided a convex feasibility problem,
OCH(d) represents a CP.

Algorithm E Online Convex Hull Approach
E-1: (Input)

E-1.1: (Feasibility problem) Provide feasibility problem (g, h).
E-1.2: (Termination parameter) Provide termination parameter

– Maximum number nstop ≥ nS + 1 of optimizations to be performed
– Threshold ϵvol > 0 for difference of volumes

E-2: (Setup) Define k := nS + 1
E-2.1: (Initial vertices) Obtain initial vertices

�

z∗,1, . . . , z∗,k
	

from solving OCH
�

d i
�

, i = 1, . . . , k with

d i =

(

ei , for i = 1, . . . , k− 1

−
�

1⎷
nS

, . . . , 1⎷
nS

�⊤
, for i = k

(4.12)

E-2.2: (Inner polytope) Create inner polytope Pk
inner := conv
��

z∗,1, . . . , z∗,k
	�

E-2.3: (Outer polytope) Create outer polytope Pk
outer :=
�

y ∈ RnS : Ak y ≤ bk
	

where

Ak
i =
�

d i
�⊤

, bk
i =
�

d i
�⊤

z∗,i (4.13)

are the respective i-th row of matrix Ak ∈ Rnk×nS and vector bk ∈ Rnk .
E-3: (Termination Criteria) If k ≥ nstop or vol

�

Pk
outer
�− vol
�

Pk
inner
�

< ϵvol is true, go to step E-8.
E-4: (Search direction) Determine the outer unit normal vector dk+1 that is orthogonal to a facet F of Pk

inner.
E-5: (Optimization) Obtain vertex z∗,k+1 from solving OCH

�

dk+1
�

E-6: (Update)
E-6.1: (Inner polytope) Pk+1

inner := conv
�

Pk
inner
⋃︁�

z∗,k+1
	�

(use Algorithm F)
E-6.2: (Outer polytope) Pk+1

outer :=
�

y ∈ RnS : Ak+1 y ≤ bk+1
	

with

Ak+1 :=

�

Ak

�

dk+1
�⊤

�

, bk+1 =

�

bk

�

dk+1
�⊤

z∗,k+1

�

(4.14)

E-7: (Increment and repeat) Set k := k+ 1, go to step E-3.
E-8: (Output)

E-8.1: (Results of optimizations) Minimizer x∗,i of online convex hull task OCH
�

d i
�

, i = 1, . . . , k
E-8.2: (Inner polytope) Under-approximation Pinner := Pk

inner
E-8.3: (Outer polytope) Over-approximation Pouter := Pk

outer

The online convex hull algorithm is described in Algorithm E. Given a feasibility problem
and a parametrization for the algorithm, in the setup step E-2, nS + 1 optimizations are
performed with search direction ei ∈ RnS , i.e. i-th standard unit vector, yielding a cor-
responding number of vertices. Based on these, an initial inner and outer polytope are
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created. While the inner polytope is the convex hull of the vertices, the outer polytope is
the intersection of the halfspaces, the hyperplanes at the vertices yield. Steps E-3 to E-7
are carried out in a loop. Depending on the current state of the inner and outer polytope,
optimizations are performed to obtain new vertices and to update the two polytopes. This
loop is exited when the difference in volume of both inner and outer polytope falls be-
low the threshold ϵvol, or the number of optimizations runs exceeds the limit nstop. Both
termination parameters are considered as inputs in E-1.2. Assuming the initial vertices
z∗,1, . . . , z∗,nS+1 are affinely independent, the inner polytope in E-2.2 is an nS -simplex. The
nS +1 facets of the simplex are directly identified, since the convex hull of every combina-
tion of nS out of the nS+1 vertices is a facet. The outer normal vectors of the facets of Pk

inner
represent parametrizations of potential optimization runs OCH(d). It is therefore impor-
tant to keep track of them, which is realized through a set Ik of ordered identifiers. Every
time a new vertex z∗,k+1 is determined, both polytopes need to be updated in E-6. The new
outer polytope Pk+1

outer is obtained by appending a row to Ak and bk as done in (4.14). The
update routine necessary in E-6.1 is described in Algorithm F. The output of Algorithm E
is eventually given by the solutions of the optimization runs OCH

�

d i
�

, i = 1, . . . , k and the
final inner and outer polytope Pinner and Pouter.
Algorithm F Incremental Convex Hull
F-1: (Input) Expects k > nS + 1

F-1.1: (Vertices) Provide vertices
�

z1, . . . , zk
	

F-1.2: (Ordered Identifiers) Provide set of ordered identifiers Ik for facets of Pk := conv
��

z1, . . . , zk
	�

F-1.3: (New vertex) Provide new vertex zk+1

F-2: (Setup) Define
F-2.1: (Interior point) o := 1

k+1

k+1
∑︁

i=1
z i

F-2.2: (Shifted vertices) v i = z i − o, i = 1, . . . , k+ 1
F-2.3: (Normal vector) Given an ordered identifier I ∈ {1, . . . , k+ 1}nS , define n⃗I ∈ RnS with

VI n⃗I =

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠
, where VI =

⎡

⎢

⎣

�

v I1
�⊤

...
�

v InS
�⊤

⎤

⎥

⎦
.

F-3: (Loop) For all I ∈ Ik, check if
�

vk+1
�⊤

n⃗ (I)≤ 1:
F-3.1: (Conserve) If condition holds, insert I into Ik+1.
F-3.2: (Replace) Otherwise, go through all

� nS
nS+1

�

combinations of elements in
�

I1, . . . , InS , k+ 1
	

. In-
sert combination Ĩ as an ordered identifier into Ik+1 for which these conditions hold:

i. VĨ has full rank
ii. v⊤n⃗
�

Ĩ
�≤ 1 for all v ∈ �v1, . . . , vk+1

	

F-4: (Output) Updated set of ordered identifiers Ik+1 for facets of Pk+1 := conv
�

Pk
⋃︁�

z∗,k+1
	�

Based on the ordered identifiers Ik of the facets of Pk
inner = conv
��

z∗,1, . . . , z∗,k
	�

, Algorithm
F is the method to determine Ik+1 for the facets of Pk+1

inner = conv
��

z∗,1, . . . , z∗,k+1
	�

. The
facets of Pk

inner must be checked if they are still prevailing. In other words, it is inspected
with the outer normal vectors whether the newly determined vertex z∗,k+1 is above or under
a facet. For those facets, the latter can be confirmed for, Ik+1 inherits the corresponding
ordered identifier from Ik. Otherwise, new identifiers are created by connecting the ridges
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of the outdated facets with z∗,k+1. If a new identifier gives a facet, it is pushed into Ik+1.
In this process, shifted vertices are defined in F-2.2 based on an interior point o ∈ RnS such
that the resulting normal vector n⃗I as in F-2.3 points outwards. Figure 4.8 illustrates how
the incremental hull is performed for a two-dimensional example where a fourth vertex v4

shall be added to the set of vertices
�

v1, v2, v3
	

of polytope P3. The new point v4 is beneath
the facets conv

��

v1, v2
	�

and conv
��

v2, v3
	�

corresponding to ordered identifiers (1, 2) and
(2,3). Therefore, these elements prevail in P4 and I4 respectively. However, v4 is above
the facet with the ordered identifier (1,3). For all combinations of indices of {1,3, 4}, it is
checked whether they represent facets of P4. (1, 3) has already been excluded, so (1,4) and
(3,4) remain to be checked. All regarded vertices are respectively beneath conv

��

v1, v4
	�

and conv
��

v3, v4
	�

, which confirms that they are facets of P4. The respective ordered
identifier can then be inserted into I4.

v1
v2

v3v4

P3

(a) I3 = {(1,2) , (2, 3) , (1,3)}

v1
v2

v3
v4

P4

(b) I4 = {(1, 2) , (2,3) , (3, 4) , (1,4)}

Figure 4.8: Illustration of the incremental convex hull

4.3.1 Output Properties

The results of the online convex hull approach can be further processed in a variety of
ways. In case the feasibility problem (g, h) is convex, an element of the feasibility set can
be specified from a given point in the inner polytope.
Proposition 4.9. Assume Algorithm E has been performed with k ≤ nstop optimization runs,
given a convex feasibility problem (g, h) and some termination parameters as input. For any
z ∈ Pinner, the solution of
�

z∗,1 . . . z∗,k

1 . . . 1

�

c =

�

z
1

�

with ci ≥ 0, i = 1, . . . , k. (4.15)

yields a feasible x ∈ Rnopt with

x = c1 x∗,1 + · · ·+ ck x∗,k (4.16)

and P x = z.
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Proof. As z ∈ Pinner is an element of a convex hull, a vector of coefficients c ∈ Rk exists, such
that z = c1z∗,1 + · · ·+ ckz∗,k is a convex combination. The components of c are positive and
add up to 1. The solution of (4.15) provides suitable coefficients. The feasibility problem
is convex and so is the feasibility set due to Lemma 3.25. Thus, the convex combination
(4.16) is in the feasibility set (Lemma 2.4). Furthermore, because of

P x = c1P x∗,1 + · · ·+ ckP x∗,k = c1z∗,1 + · · ·+ ckz∗,k = z,

x is projected onto z by P.

Since the facets of the inner polytope Pinner are known because the boundary description
is updated in every loop cycle in E-6.1, the H-representation can be specified. With that,
a candidate y ∈ RnS can be checked if it is an element of Pinner, which implies y ∈ S. The
converse does not necessarily hold.
The inequalities in the definition of the outer polytope in E-2.3 and E-6.2 are established
by the following theorem.

Theorem 4.10 (Supporting hyperplane). Let x∗ ∈ Rnopt minimize OCH(d) for d ∈ RnS .
Then, d is the normal vector of a supporting hyperplane to S at z∗. Furthermore, S is contained
in the corresponding halfspace:

S ⊂ �y ∈ RnS : d⊤ y ≤ d⊤z∗
	

. (4.17)
Proof. Suppose, S is not fully contained in the halfspace, i.e. y ∈ S exists for which
d⊤ y > d⊤z∗ holds. Then, equivalently −d⊤ y < −d⊤z∗ holds and x∗ is not the minimizer of
OCH
�

d i
�

.

The outer polytope Pouter is therefore an over-approximation of S given in the H-
representation. Thus, for all y ̸∈ Pouter, it follows y ̸∈ S

4.3.2 Discussion

The online convex hull approach makes use of the convexity of the set S and successively
approximates the latter with one polytope from the inside and another one from the out-
side. This can be observed in Figure 4.9, which illustrates the results when approximating
an ellipse. This ellipse is defined by (E) with α1 = 2 and α2 = 3. After 48 optimizations,
Pinner (blue) and Pouter (orange) cover almost the same area in Figure 4.9a. The conver-
gence of the volumes of the inner and outer polytopes towards each other with increasing
number of optimizations is illustrated in Figure 4.9b. The inner polytope covers 90% of the
volume of the outer polytope after 10 optimization runs.
In Figure 4.10, the same behavior can be observed in the case of the ellipsoid specified
by (E) with α1 = 2, α2 = 3 and α3 = 4. The inner approximations after 16, 64, and 256
optimizations are showcased, and the ellipsoid form becomes clearer at each stage. The
outer approximations are neglected in these figures to ensure a clean visualization. It takes
visibly more optimizations to close the gap between the inner and outer polytope compared
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to the 2D example which should be taken into account when choosing the termination pa-
rameter. The inner polytope achieves 90% of the outer polytope after 130 optimization
runs.
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Figure 4.9: Approximation of an ellipse using the online convex hull approach
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Figure 4.10: Approximation of an ellipsoid using the online convex hull approach

The approximation results of the square are shown in Figure 4.11. The square, speci-
fied by (B) with β1 = β2 = 1, can be completely reconstructed. While theoretically, only
four optimizations are needed in the best case, the volume of the inner polytope reaches
the actual volume of the square after six optimizations. The reason for this is the initial
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search directions in E-2.1, as well as the non-prioritized facet selection, and thus, direc-
tion parametrization in E-4. After four optimization runs, the four corners of the searched
square are not necessarily found. After a total of ten optimizations, the reconstruction is
secured with the outer polytope covering the same area as the inner polytope. The unsur-
prising conclusion that polytopes best approximate a convex polytope is thus underlined
by this example.
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Figure 4.11: Approximation of a square using the online convex hull approach
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Figure 4.12: Approximation of a cube using the online convex hull approach
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Figure 4.12 depicts the approximation results of the three-dimensional box, given by (B)
with β1 = β2 = β3 = 1. Also here, the sought set can be completely reconstructed. This is
achieved after 17 optimizations. The outer polytope is congruent with the cube after 12 op-
timizations, while the growth of the inner polytope stagnates in the meantime. The latter
can be traced back to the fact that if a facet at some stage of the approximation is a subset
of the boundary of the sought set, no growth in the outer normal direction is achieved.
On closer inspection, Figure 4.11a shows that the mapping of a search direction d onto a
boundary point z∗ ∈ ∂ S, as implied by OCH(d), is not injective. This can lead to consider-
able startup difficulties after the setup step E-2. In E-2.1, the initial vertices z∗,i, i = 1, . . . , nS
resulting from OCH

�

ei
�

for an nS -dimensional box could all lead to the same result

z∗,i =

⎡

⎢

⎣

β1
...
βnS

⎤

⎥

⎦
.

Together with the vertex z∗,nS+1, the initial inner polytope is just a line segment and not
an nS -simplex. Thus, further search directions in step E-4 cannot be uniquely specified
for nS > 2. In [28], an alternative setup of the initial polytope is described. In one opti-
mization problem, nS + 1 vertices are searched on the boundary S such that the volume
of a resulting symmetric simplex is maximal. In the objective function, a determinant is
maximized according to the volume formula (2.6). If the underlying feasibility problem
is convex, semi-definite programming techniques can be used to solve this problem. As
appealing as it is to perform only one optimization instead of nS +1, this one optimization
is correspondingly nS + 1 times as large as OCH(d) because the feasibility problem must
be adhered to by all vertices respectively. For high-dimensional optimization tasks such as
transcribed optimal control problems, exploiting the sparsity patterns of internal matrices
is mandatory especially for this application.
It is necessary to calculate the volumes of the inner and outer polytopes to check the ter-
mination criterion in E-3. The initial values result from the formula (2.6). All facets of
Pk
inner that, according to the check in F-3, are no longer facets of Pk+1

inner due to a new vertex
z∗,k+1, serve as the bases of simplices that complete Pk

inner to Pk+1
inner. Therefore, instead of

computing the volume of the entire inner polytope, it is sufficient to compute the volume
increment after each iteration. The procedure is similar for the outer polytope. With each
optimization, an additional halfspace potentially cuts off some of the volume. It is suffi-
cient to determine the volume reduction here. However, only in two dimensions this cutoff
is easy to determine, because in this case it is a triangle. In higher dimensions, it is a poly-
tope, which, in turn, must be covered with simplices, whose volumes can be specified.
The largest computational effort is also found in the optimizations in E-5 in this approach.
The online convex hull optimization task does not impose any constraints other than the
feasibility problem and has a linear objective function. Feasible warm starts without re-
allocating memory are therefore also possible in this approach because the optimization
tasks do not differ structurally. A prioritization strategy for the selected facet in E-4, which
determines the next optimization, is a potentially useful addition to Algorithm E in order
to make the most efficient use of a possibly limited computation time. A viable heuristic
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could be based on the size of the facet and include a check whether an element in the outer
polytope is given at a minimum step size from the barycenter of a facet in the direction of
the outer unit normal. A prioritization strategy is presented in [27].
A parallelization of the online convex hull approach is conceivable by specifying search di-
rections d1, . . . , dnstop in advance. From the found vertices, an initial simplex can be formed,
and the inner polytope can be built up successively according to Algorithm F. It has to be
considered for the original Algorithm E as well as for a parallelized variation that the exact
number of facets of the final inner polytope is not predictable. Therefore, if dynamic mem-
ory allocation is not possible, a final number of facets must be estimated for pre-allocation.
This number can be chosen based on (2.5). Reaching it while the inner polytope is updated
thus also represents a termination criterion.
If the underlying feasibility problem is convex and Algorithm E is performed, for each
element z ∈ Pinner, a feasible x ∈ Rnopt subject to (g, h) can be determined as a convex com-
bination of the solutions from E-8.1 based on Proposition 4.9. For this, the equation (4.15)
must be solved, which for k > nS + 1 is an under-determined linear system of equations
subject to inequalities. Further optimization becomes necessary only if there is a require-
ment that x must minimize a separate cost function.
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Figure 4.13: Approximation of reachable set of the Rayleigh problem using the online convex hull approach

In case S is not convex, Pinner is not necessarily an under-approximation. This can be
observed in Figure 4.13 in which results of the approximation of the reachable set of the
Rayleigh problem is illustrated. The polygon outlined in blue represents Pk

inner and the
one in orange Pk

outer for k ∈ {6,48}. After six optimizations, it can be seen in Figure 4.13a
that P6

inner is not a subset of S. After 48 optimizations, the inner polytope and the outer
polytope are nearly congruent, and it appears that the convex hull of the non-convex S is
approximated. However, on closer inspection of Figure 4.13b, a region of the reachable set
is not covered. At one point of the approximation, a vertex was found that is a local but
not a global minimum leading to this incident.
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4.4 Defect Hull Approach

The defect hull Algorithm continues the ideas of a parallelized online convex hull ap-
proach addressed in Section 4.3 and serves as means to approximate a convex set S in
nS -dimensional space. As in the online convex hull approach, an inner and an outer poly-
tope are created that shall resemble S. The vertices of the inner polytope are also generated
through optimizations. The focus in the defect hull approach lies in parallelization and the
post-optimization processing of results based on parametric sensitivity analysis. In order
to invoke concurrent optimizations, a list of search directions

D :=
�

d1, . . . , dnD
	

(4.18)

is defined at the beginning. The elements in D are considered to be uniformly distributed
points1 on the unit sphere SnS−1 :=

�

y ∈ RnS : ∥y∥2 = 1
	

. Generating the convex hull of D
results in a boundary description (D,I). Thus, any element of I corresponds to a facet of
conv(D):

F is a facet of conv(D) ⇐⇒ ∃!I ∈ I : F = conv
�

d I1 , . . . , d InS
�

. (4.19)

The optimizations required in the defect hull approach are defined as follows.

Definition 4.11 (Defect hull optimization task). Let (g, h) denote a feasibility problem.
Given a vantage point o ∈ S� and a direction d ∈ RnS , the minimization task

min
x∈Rnopt ,η∈R

−η

subject to g (x) = 0

h (x)≤ 0

z = o+ηd

(DH(o, d))

with z = P x as in (4.1), is called a defect hull task.

Provided a vantage point o ∈ S� and a direction d ∈ D, a minimizer x∗ of DH(o, d) is sought
such that z∗ represents the furthest point on the ray that starts at o and extends along d.
This is achieved by additional nS linear constraints and one more optimization variable
η, which represents the distance between z and o. By this means, DH(o, ·): SnS−1 → ∂ S,
d ↦→ z is injective. In case the underlying feasibility problem (g, h) is convex, DH(o, d) is a
CP.
Furthermore, in the defect hull optimization task, artificial perturbation parameters are
incorporated. After finding nominal solutions, they lead to further very valuable properties
resulting from the parametric sensitivity analysis.

1In this work, uniformly distributed points on the unit sphere were generated using the Matlab software
package MinimumEnergyPoints based on the results in [45].
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Definition 4.12 (Perturbed defect hull optimization task). Let (g, h) denote a feasibility
problem. Given a vantage point o ∈ S� and a direction d ∈ RnS , the minimization task

min
x∈Rnopt ,η∈R

−η

subject to g (x) = 0

h (x)≤ 0

z = o+η (d + p) + q

(DH(o+ q, d + p))

with z = P x as in (4.1), is the perturbed version of DH(o, d). The nominal values for the
perturbations are defined as q0 := 0 and p0 := 0.

Both perturbations q and p affect the additional linear constraints introduced in the defect
hull task. They are perturbed constantly by q and linearly by p.
The defect hull approach is described in Algorithm G and visualized in Figure 4.14. As
inputs in G-1, a feasibility problem (g, h), search directions D, ordered identifiers I, and an
interior point o of S are assumed. Since the search directions are known in advance, they
are independent of each other during the optimization step. Thus, all defect hull tasks can
be computed concurrently in G-2. Unlike the online convex hull approach, no convex hull is
evaluated here. Instead we regard a star-shaped triangulated polytope Pinner with vertices
DH(o,D) :=
�

z∗,1, . . . , z∗,nD
	

. The set of offline determined ordered identifiers I that fulfills
(4.19) will be used for the boundary description (DH(o,D),I) of the under-approximating
inner polytope Pinner. In Figure 4.14, the search directions in D are depicted by black
arrows, and the Pinner is outlined in blue.

S

Pinner

Pouter

Figure 4.14: Illustration of the defect hull algorithm

It is tolerated that Pinner in G-3.2 is not convex but star-shaped2. The inner polytope is
the union of full-dimensional simplices. For each ordered identifier I ∈ I, such a simplex
is given as the convex hull of the found boundary points z∗,I1 , . . . , z∗,InS and the vantage
point o. The simplex partitioning comes along with benefits, which are discussed further

2The name of this approach is traced back to the fact that instead of the actual convex hull, a kind of
envelope with "dents" is used as an inner approximation. In two-dimensional space, non-convexities do not
occur and Pinner is convex. In three-dimensional space, however, it is different, as the results in Section 4.4.2
show.
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in Section 4.4.1.1. The sensitivity-based outer polytope Pouter is an over-approximation of
the convex S. This will be shown in Section 4.4.1.2. In Figure 4.14, the facets of Pouter are
indicated in orange. Another sensitivity result is the curvature hinted in violet.

Algorithm G Defect Hull
G-1: (Input)

G-1.1: (Feasibility problem) Provide feasibility problem (g, h)
G-1.2: (Search directions) Provide a set D =

�

d1, . . . , dnD
	 ⊂ SnS−1 of uniformly distributed search

directions.
G-1.3: (Facet identifiers) Provide a set I of facet identifiers for which (4.19) holds.
G-1.4: (Vantage point) Provide an interior point o ∈ S�.

G-2: (Optimization) Compute DH
�

o, d i
�

for all d i , i = 1, . . . , nD.
G-3: (Output)

G-3.1: (Results of optimizations) From defect hull tasks DH
�

o, d i
�

, i = 1, . . . , nD
– Primal variables

�

x∗,i ,η∗,i
�

and boundary points z∗,i

– Parametric sensitivities ∇qη
i (0) , ∇pη

i (0) , ∇2
qη

i (0) , ∇2
pη

i (0)

G-3.2: (Inner polytope) Pinner :=
⋃︁

I∈I
conv
��

o, z∗,I1 , . . . , z∗,InD
	�

G-3.3: (Outer polytope) Pouter := {y ∈ RnS : Ay ≤ b} where

Ai = −∇qη
i (0)⊤ , bi = Aiz

∗,i (4.20)

are the respective i-th row of matrix A∈ RnD×nS vector b ∈ RnD .

4.4.1 Output Properties

The outputs of Algorithm G provide a variety of properties that can be profitably used after
the application. This section explores these properties and is divided into three subsections:
First, the inner polytope G-3.2 is examined in more detail. The relationship between the
parametric sensitivities and the outer polytope in G-3.3 is explained next. It is possible to
access second-order sensitivity derivatives, which could allow sophisticated estimates of
the boundary of the sought set to mitigate the need for further optimization.

4.4.1.1 Simplicial Partitions of Inner Polytope

The resulting inner polytope in G-3.2 is the union of simplices whose intersection has no
volume. From each of these simplices, the respective volume can be calculated as follows.
Proposition 4.13 (Volume of a partition). Assume the results of Algorithm G are given pro-
vided D, I, and o ∈ S�. Let I ∈ I denote an ordered identifier that corresponds to an arbitrary
facet of conv(D). Define PI = conv

��

0, d I1 , . . . , d InS
	�

and P ′I = conv
��

o, z∗,I1 , . . . , z∗,InS
	�

as
partitions of the unit ball polytope and the defect hull. Then,

vol
�

P ′I
�

= vol(PI)
nS
∏︂

j=1

|︁

|︁

|︁η∗I j

|︁

|︁

|︁ ,

where η∗I j
results from DH

�

o, d I j
�

, with z∗,I j = o+η∗I j
d I j .
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Proof. Regard the volume formula given in (2.6). Conclude

vol(P ′I) =
1

nS!

|︁

|︁

|︁

|︁

|︁

|︁

det

⎛

⎝

⎡

⎣z∗,I1 − o . . . z∗,InS − o

⎤

⎦

⎞

⎠

|︁

|︁

|︁

|︁

|︁

|︁

=
1

nS!

|︁

|︁

|︁

|︁

|︁

|︁

det

⎛

⎝

⎡

⎣d I1 . . . d InS

⎤

⎦diag
�

η∗I1
, . . . ,η∗InS

�

⎞

⎠

|︁

|︁

|︁

|︁

|︁

|︁

=
1

nS!

|︁

|︁

|︁

|︁

|︁

|︁

det

⎛

⎝

⎡

⎣d I1 . . . d InS

⎤

⎦

⎞

⎠

|︁

|︁

|︁

|︁

|︁

|︁

|︁

|︁

|︁det
�

diag
�

η∗I1
, . . . ,η∗InS

��
|︁

|︁

|︁

= vol(PI)
nS
∏︂

j=1

|︁

|︁

|︁η∗I j

|︁

|︁

|︁ .

The volume of the partition P ′I can be directly obtained from the volume of PI . The total
volume of Pinner can be determined with formula (2.7) which is further simplified through
Proposition 4.13.
If S is convex, the inner polytope is an under-approximation of the sought set, i.e. Pinner ⊆
S. The procedure to check if a given element is in the inner polytope relies on the following
proposition.

Proposition 4.14 (Elements in Pinner). Assume the results of Algorithm G are given provided
D, I, and o ∈ S�. Let y ∈ RnS be an arbitrary point. Then, y ∈ Pinner holds if and only if an
I ∈ I exists such that

c := diag
�

η∗I1
, . . . ,η∗InS

�

−1

⎡

⎣d I1 . . . d InS

⎤

⎦

−1

(y − o) ∈ RnS , (4.21)

where η∗I j
results from DH

�

o, d I j
�

, with z∗,I j = o+η∗I j
d I j , fulfills the following conditions:

ci ≥ 0, i = 1, . . . , nS
nS
∑︂

i=1

ci ≤ 1.
(4.22)

Proof. It follows from y ∈ Pinner that a simplex partition conv
��

o, z∗,I1 , . . . , z∗,InS
	�

for an
I ∈ I must exist that y is an element of. Thus, c0, . . . , cnS

≥ 0 exist with
nS
∑︁

i=0
ci = 1 such that

y is a convex combination:

c0o+
nS
∑︂

i=1

ciz
∗,Ii = y
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c0o+
nS
∑︂

i=1

ci

�

ηIi
d Ii + o
�

= y

⎡

⎣d I1 . . . d InS

⎤

⎦diag
�

ηI1
, . . . ,ηInS

�

⎛

⎜

⎝

c1
...

cnS

⎞

⎟

⎠
= y − o. (4.23)

From (4.23), obtain (4.21). The inverse of the matrices on the left hand side of (4.23)
are well-defined because d I1 , . . . , d InS are linearly independent, and ηI j

> 0 holds for all
j = 1, . . . , nS . Finally, (4.22) holds because

nS
∑︂

i=1

ci = 1− c0 ≤ 1.

The reverse implication holds by defining

c0 := 1−
nS
∑︂

i=1

ci .

Then, c0, c1, . . . , cnS
are given such that y is a convex combination of o, z∗,I1 , . . . , z∗,InS and

therefore an element of Pinner.

Thus, to check if y ∈ Pinner holds, an I ∈ I must exist that fulfills (4.21) and (4.22).
Furthermore, if the feasibility problem (g, h) is convex, the obtained coefficients (4.21) can
be used to assign a feasible x ∈ Rnopt to y.

Corollary 4.15 (Pinpoint a feasible solution). Assume the defect hull algorithm is per-
formed for a convex feasibility problem (g, h), and suppose an x0 ∈ X is given such that P x0 =
o, analogously to (4.1). Let z ∈ Pinner be an element of the partition conv

��

o, z∗,I1 , . . . , z∗,InS
	�

defined by facet identifier I ∈ I. Furthermore, let c ∈ RnS be defined as in (4.21) and fulfill
(4.22). Then,

x =

�

1−
nS
∑︂

i=1

ci

�

x0 +

⎡

⎣x∗,I1 . . . x∗,InS

⎤

⎦ c (4.24)

is feasible subject to (g, h), and z = P x .

Proof. The convex feasible setX contains all convex combinations of its elements, especially
(4.24). Multiplying with projection matrix P as in (4.1) on both sides of (4.24) implies
z = P x .

In conclusion, the simplex partitioning of the inner polytope can be exploited for volume
calculations and a (parallelized) check whether a given point is inside the approximation.
If that is the case and in addition, the underlying feasibility problem is convex, a feasible
solution can be instantly specified leading to this point.
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4.4.1.2 Over-Approximation

If the sought set is convex, the resulting outer polytope is an over-approximation. The
first-order sensitivities in G-3.1 represent supporting hyperplanes. The following lemma is
necessary to show that.
Lemma 4.16 (Linearity for perturbations in search direction). Let z∗ ∈ RnS denote a
boundary point of a convex S that results as the nominal solution of the optimization problem
DH(o+ q, d) for q = q0. For DH(o+ q, d), the assumptions in the Theorem 3.40 shall be
fulfilled. Then, the following holds:

i. ∇qη(0)⊤d = −1

ii. d⊤∇2
qη(0)d = 0.

Proof. For a perturbation q := ϵd along the search direction,

z (0) = z (ϵd)

holds because DH(o+ q, d) would lead to the same boundary point as in the nominal case.
This is equivalent to

o+η (0) d = o+η (ϵd) d + ϵd,

which leads to a relation

η (ϵd) = η (0)− ϵ.
Defining a function η̃: R → R,ϵ ↦→ η (ϵd), η̃′ (0) = −1 and η̃′′ (0) = 0 are concluded.
Applying the chain rule, it follows η̃′ (0) = ∇qη(0)⊤d and η̃′′ (0) = d⊤∇2

qη(0)d, and thus,
the statement holds true.
Theorem 4.17 (q-Sensitivity Induced Supporting Hyperplane). Let z∗ ∈ RnS denote a
boundary point of a convex S which is obtained through the nominal solution of the optimiza-
tion problem DH(o+ q, d) for q = q0. For DH(o+ q, d), the assumptions in Theorem 3.40 shall
be fulfilled. Then, S is fully contained in the halfspace induced by the supporting hyperplane

H := {x ∈ Rn : a⊤x = a⊤z∗} with a = ±∇qη(0).

Proof. According to the sensitivity theorem a neighborhood Nq(0) exists such that the dif-
ferentiable function z : Nq(0)→ RnS , q ↦→ z(q) maps a perturbation q to a boundary point
z(q) ∈ ∂ S found through DH(o+ q, d). Furthermore, z(0) = z∗ holds. Since S is convex, a
supporting hyperplane exists at the boundary point z(0). As in the statement, this hyper-
plane shall be induced by a vector a ∈ RnS \{0}. Define functionφ : N�q(0)→ R, q ↦→ a⊤z(q),
and note that φ is differentiable. For all z̃ ∈ S,

a⊤z̃ ≤ a⊤z(0)

holds, and especially, for arbitrary q ∈Nq(0),

a⊤z (q)≤ a⊤z (0) ⇐⇒ φ(q)≤ φ(0)
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applies. Thus, 0 is the maximizer of φ, and hence, ∇qφ(0) = 0. Recall z(q) = o+η (q) d+q
from DH(o+ q, d). From the vanishing gradient

0=∇qφ(0) =∇q

�

a⊤z(q)
�

|︁

|︁

|︁

q=0
=∇qa⊤ (o+η (q) d + q)

|︁

|︁

|︁

q=0

= a⊤d∇qη(0) + a,

obtain

a = −a⊤d∇qη(0). (4.25)

Thus, a is a scaled version of ∇qη(0). Its direction is decided by the second derivative, i.e.
the Hessian of φ at q = 0, which must be negative semi-definite

∇2
qφ (0) = a⊤d∇2

qη (0)≤ 0. (4.26)

Choosing a = ±∇qη(0) fulfills equation (4.25) because ±∇qη(0)⊤d = ∓1 holds due to
Lemma 4.16.

Since S is assumed to be convex, the enclosed angle between d and an outer normal a of
a supporting hyperplane must be acute. This suggests that the inner product a⊤d must
be positive. The lower halfspace H≤ that contains S is therefore defined through a =
−∇qη(0). Alternatively, to avoid checking the Hessian, the direction of a must conform
to the inequality a⊤o ≤ a⊤z∗. The outer polytope Pouter is the intersection of halfspaces
induced by the supporting hyperplanes of all optimizations performed and, thus, an over-
approximation of S.
The gradient ∇pη, which has not been investigated yet, is related to ∇qη in the following
way.

Proposition 4.18 (First-order sensitivity conversion). Let η∗ denote the optimal step size
found as nominal solution of DH(o+ q, d + p) for q = q0 and p = p0. For DH(o+ q, d + p),
the assumptions in Theorem 3.40 shall be fulfilled. For the first-order sensitivity derivatives
∇pη (0) and ∇qη (0) for DH(o+ q, d + p), the following relation holds

∇pη (0) = −η∗∇qη (0) . (4.27)
Proof. Let λ̄ ∈ RnS denote the Lagrange multiplier that is associated with the constraints
perturbed by q and p. Then, according to Corollary 3.41

∇qη= λ̄ (4.28)

holds. Following Theorem 3.40,

∇pη= −∇p L = −η∗λ̄ (4.29)

can be obtained. Inserting (4.28) into (4.29) leads to the statement.

Thus, ∇pη can also theoretically be used to define the outer polytope Pinner.
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Corollary 4.19 (p-Sensitivity induced supporting hyperplane). Let z∗ ∈ Rn denote the
sample point on the boundary of a convex set S which result as the nominal solution of the
optimization problem DH(o+ q, d + p) for q = q0 and p = p0. For DH(o+ q, d + p), the condi-
tions in Theorem 3.40 are assumed to be fulfilled. Then, S is fully contained in the halfspace
induced by the supporting hyperplane

H := {x ∈ Rn : a⊤x = a⊤z∗} with a = ∓∇pη(0).

Proof. In the proof of Theorem 4.17, any normal vector a = α∇qη with α ∈ R \ {0} is
suitable to define the supporting hyperplane, especially α= −η∗.

4.4.1.3 Post-Optimal Second-Order Approximation

In Definition 4.12, the perturbation p in DH(o+ q, d + p) is introduced as an alternate ap-
proach to harness more knowledge from one optimization. Generally, in the defect hull
approach, the vantage point o remains the same, while the search direction d is adjusted
during the optimizations in G-2. Thus, from an algorithmic point of view, it is more at-
tractive to experience how a solution of DH(o, d) will change when the search direction
varies as in DH(o, d + p). The sensitivities resulting from an additive perturbation on the
search direction allows well-founded estimations of boundary points surrounding the nom-
inal sample point. The second-order sensitivitites subject to q-type perturbation can be
converted.
Proposition 4.20 (Second-order sensitivity conversion). Let η∗ denote the optimal step
size found as nominal solution of DH(o+ q, d + p) for q = q0 and p = p0. For DH(o+ q, d + p),
the assumptions in Theorem 3.40 shall be fulfilled. For the second-order sensitivity derivatives
∇2

pη (0) and ∇2
qη (0) for DH(o+ q, d + p), the following relation holds

∇2
pη (0) = 2η∗∇qη (0)∇qη (0)

⊤ + (η∗)2∇2
qη (0) . (4.30)

Proof. For the (i, j)-component of∇2
pη, after resolving the dyadic product in (4.30), it must

hold:
∂ 2

∂p j∂pi
η= 2η∗ ∂∂qi

η ∂∂q j
η+ (η∗)2 ∂ 2

∂q j∂qi
η. (4.31)

Due to Proposition 4.18, we may start our derivation with
∂ 2

∂p j∂pi
η= − ∂∂p j

ηλ̄i

continue by using the product rule

= −
��

∂
∂p j
η
�

λ̄i +η
∗ � ∂
∂p j
λ̄i

��

= −
�

−η∗λ̄ jλ̄i +η
∗ ∂
∂p j

�

∂
∂qi
η
��

and due to the symmetry of second derivatives (cf. Theorem 1 on page 50 in [32])

= −
�

−η∗λ̄ jλ̄i +η
∗ ∂
∂qi

�

∂
∂p j
η
��
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= −
�

−η∗λ̄ jλ̄i +η
∗ �− ∂∂qi

ηλ̄ j

��

= −
�

−η∗λ̄iλ̄ j −η∗
��

∂
∂qi
η
�

λ̄ j +η
∗ � ∂
∂qi
λ̄ j

���

= η∗λ̄ jλ̄i +η
∗ �λīλ̄ j +η

∗ � ∂ 2

∂qi∂q j
η
��

= 2η∗λ̄iλ̄ j + (η
∗)2 ∂

∂qi
λ̄ j ,

which is equivalent to (4.31).

Assume that the nominal results z∗,i ,η∗i ,∇ηi ,∇2
pη

i from the defect hull optimization task
DH
�

o, d i + p
�

are given for any d i ∈ D and p = p0. With the available information about
the second-order derivative and based on the constraint

z = o+η
�

d i + p
�

,

it is now possible to calculate a Taylor polynomial of corresponding order for the function
z i in p0 = 0. This leads to an approximation

z i (p)≈ z̃ i (p) =
�

z̃ i
1 (p) , . . . , z̃ i

nS
(p)
�⊤

with z̃ i
j (p) = z∗,ij +
�

d i
j∇pη

i(0) +η∗i e j
�

p

+ 1
2 p⊤
�

d i
j∇2

pη
i(0) + e j∇pη

i(0)⊤ +∇pη
i(0)
�

e j
�⊤�

p

(4.32)

where e j denotes the j-th standard unit vector, j = 1, . . . , nS . An alternate approach is to
calculate the Taylor polynomial for ηi. Accordingly, obtain

z i (p)≈ z̃ i (p) = o+ η̃i (p)
�

d i + p
�

with η̃i (p) = η
∗
i +∇pη

i (0)⊤ p+
1
2

p⊤∇2
pη

i (0) p.
(4.33)

After applying the defect hull algorithm, an approximation based on the results of all opti-
mization tasks DH

�

o, d i
�

, d i ∈ D, is applicable. For this purpose a function

s : SnS−1→ RnS (4.34)

is established. It maps a point d of the unit sphere to the approximate boundary point of S
based on solutions of DH

�

o, d i + p
�

for d i nearest to d:

s (d) =

⎧

⎪

⎨

⎪

⎩

z̃1
�

d − d1
�

, if d1 = arg min
�−d⊤d i : d i ∈ D	

... ...
z̃nD (d − dnD) , if dnD = arg min

�−d⊤d i : d i ∈ D	
(4.35)

with either definition (4.32) or (4.33). By function s, an approximate boundary recon-
struction of the sought set S is given. The underlying defining search directions in D can
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be supplemented by further ones. With the circumstances of the defect hull algorithm, the
search directions

d I :=

nS
∑︁

i=1
d Ii

∥︁

∥︁

∥︁

∥︁

nS
∑︁

i=1
d Ii

∥︁

∥︁

∥︁

∥︁

2

, I ∈ I (4.36)

are obvious candidates. One way to prioritize or select them is based on the additional
volume that can be covered in case of an optimization. For an ordered identifier I ∈ I, the
search direction d I leads to an approximate boundary point z I := s

�

d I
�

. Due to (2.6), the
additional volume is given by

vol
�

conv
��

z I , z∗,I1 , . . . , z∗,InS
	��

=
1

nS!

|︁

|︁

|︁

|︁

|︁

|︁

det

⎛

⎝

⎡

⎣z∗,I1 − z I . . . z∗,InS − z I

⎤

⎦

⎞

⎠

|︁

|︁

|︁

|︁

|︁

|︁

which can be reformulated to

=
1

nS!

|︁

|︁

|︁

|︁

|︁

|︁

det

⎛

⎝

⎡

⎣η∗I1
d I1 . . . η∗InS

d InS

⎤

⎦+
�

o− z I
� �

1 . . . 1
�

⎞

⎠

|︁

|︁

|︁

|︁

|︁

|︁

hinting the application of the matrix determinant lemma (cf. Lemma 1.1 in [23])

=
1

nS!

|︁

|︁

|︁

|︁

|︁

|︁

det

⎛

⎝

⎡

⎣η∗I1
d I1 . . . η∗InS

d InS

⎤

⎦

⎞

⎠

·

⎛

⎜

⎝
1+
�

1 . . . 1
�

⎡

⎣η∗I1
d I1 . . . η∗InS

d InS

⎤

⎦

−1

�

o− z I
�

⎞

⎟

⎠

|︁

|︁

|︁

|︁

|︁

|︁

|︁

.

Based on Proposition 4.13 and its definitions, the following relation is deduced:

vol
�

conv
��

z I , z∗,I1 , . . . , z∗,InS
	��

= vol
�

P ′I
�

|︁

|︁

|︁

|︁

|︁

|︁

|︁

1−
� 1
η∗I1

. . . 1
η∗InS

�

⎡

⎣d I1 . . . d InS

⎤

⎦

−1

�

z I − o
�

|︁

|︁

|︁

|︁

|︁

|︁

|︁

.
(4.37)

A dimensionless quantity

ρI :=
vol
�

conv
��

z I , z∗,I1 , . . . , z∗,InS
	��

vol
�

P ′I
�

is obtained by dividing by vol
�

P ′I
�

on both sides of (4.37). This ends in the following
definition.
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Definition 4.21 (Partition extension potential). Let I ∈ I be an ordered identifier, and let
P ′I := conv
��

o, z∗,1, . . . , z∗,nS
	�

denote a simplex partition of the inner polytope. Furthermore,
evaluate z I = s
�

d I
�

with d I as in (4.36) for example. The extension potential of the partition
with identifier I is given by

ρI =

|︁

|︁

|︁

|︁

|︁

|︁

|︁

1−
� 1
η∗I1

. . . 1
η∗InS

�

⎡

⎣d I1 . . . d InS

⎤

⎦

−1

�

z I − o
�

|︁

|︁

|︁

|︁

|︁

|︁

|︁

. (4.38)

Thus, the partition extension potential is the fraction of the volume of P ′I that can be addi-
tionally accessed by solving DH

�

o, d I
�

. The larger ρI is, the higher z I rises above the facet.
Accordingly, the curvature of the boundary of the set S above the facet necessarily changes
more. More support points in this area thus improve the quality of the reconstruction with
the function s. The direction dI does not have to be chosen as in (4.36). However, it must
be a search direction that can be assigned to the partition I because it is a normalized
convex combination of the vertices of the facet. Figure 4.15 shows a two-dimensional ex-
ample illustrating the partition extension potential. Here, the ordered identifier is given by
I = (i, j). The blue partition P ′I is the simplex with vertices o, z∗,i , z∗, j. In this example, di-
rection d I chosen as in (4.36). Through the approximation s

�

d I
�

= z I , another triangle can
be constructed with conv

��

z I , z∗,i , z∗, j
	�

which is colored in pink. The partition extension
potential ρI is the ratio between the pink and the blue area.

S

z∗, j

z∗,i

d j

d i

d I

s(·)

P ′I

z I

o

Figure 4.15: Partition extension potential and approximation discrepancy

Because of the construction design of s, there are inevitably evaluation points where at
least two operating points are suitable for a Taylor expansion based approximation. This
will lead to discontinuities, indicated in Figure 4.15 by two red dots. The approximation
discrepancy quantifies this discontinuity through the distance between the transition points.

Definition 4.22 (Approximation discrepancy). Let I ∈ I be a ordered identifier of a facet.
Regard (4.32) or (4.33) to evaluate z̃ I j

�

d I − d I j
�

with d I as in (4.36). The approximation
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discrepancy δI for d I is given by

δI = max
i, j=1,...,nS

∥︁

∥︁z̃ Ii
�

d I − d Ii
�− z̃ I j
�

d I − d I j
�∥︁

∥︁

2 (4.39)

The definition of the approximation discrepancy can be simplified in case approximation
method (4.33) is used.

Corollary 4.23 (Simplified approximation discrepancy). If in Definition 4.22 approxi-
mation method (4.33) is used, the approximation discrepancy δI simplifies to

δI = max
i, j=1,...,nS

|︁

|︁

|︁η̃Ii

�

d I − d Ii
�− η̃I j

�

d I − d I j
�

|︁

|︁

|︁ . (4.40)

Proof. This can be shown by inserting (4.33) into (4.39):

δI = max
i, j=1,...,nS

∥︁

∥︁z̃ Ii
�

d I − d Ii
�− z̃ I j
�

d I − d I j
�∥︁

∥︁

2
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i, j=1,...,nS
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∥︁o+ η̃Ii

�

d I − d Ii
�
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o+ η̃I j

�

d I − d I j
�

d I
�

∥︁
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∥︁

2

= max
i, j=1,...,nS

∥︁

∥︁d I
∥︁

∥︁

2

|︁

|︁

|︁η̃Ii

�

d I − d Ii
�− η̃I j
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d I − d I j
�

|︁

|︁
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i, j=1,...,nS

|︁

|︁

|︁η̃Ii

�

d I − d Ii
�− η̃I j

�

d I − d I j
�

|︁

|︁

|︁

While the partition extension potential could be evaluated for any search direction d I , the
approximation discrepancy are best evaluated for d I as defined in (4.36).

4.4.2 Discussion

The defect hull algorithm produces an approximation of the searched set S by connecting
points found by optimization to form a star-shaped triangulated polytope Pinner in a pre-
defined manner. This polytope is an under-approximation of a sought S set that is convex.
At the same time, the parametric sensitivities result in another polytope Pouter in the H-
representation, which acts as an over-approximation.
This approach is best suited for approximating convex sets with a smooth boundary. This
can be observed in Figure 4.16. The ellipse of feasibility problem (E) with α1 = 2,α2 = 3
becomes apparent at the latest after 48 optimizations, which is illustrated in Figure 4.16a.
The inner polytope outlined in blue and the orange over-approximation are nearly con-
gruent. Algorithm G has been performed for each nD ∈ {3, . . . , 48} with different sets of
search directions to approximate the ellipse. The blue and orange volume curves of the
inner and outer polytope exhibit convergence behavior against the target volume in gray
in Figure 4.16b. The relative difference between Pinner and Pouter is less than 5% after
16 optimizations. It monotonically decreases to about 0.5% applying a set of 48 search
directions.
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Figure 4.16: Approximation of an ellipse using the defect hull approach
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Figure 4.17: Approximation of an ellipsoid using the defect hull approach

For the three-dimensional results, less samples have been computed. Sets of search direc-
tions have been prepared for nD ∈ {16, 23,32, 47,64, 97,128, 193,251, 256,383} choosing
powers of two and prime numbers. The ellipsoid ((E) with α1 = 2, α2 = 3 and α3 = 4)
becomes clearly recognizable in Figure 4.17 the more optimizations are performed. A light
blue curve that shows the course of the volume of the convex hull of the inner polytope is
added to the convergence plot in Figure 4.17a. The blue and light blue curves are practi-
cally the same. The defects are barely visible in the case of the ellipsoid in Figures 4.17b -
4.17d in which the respective outer polytope is omitted for a clearer visualization.
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nD 16 23 32 47 64 97 128 193 251 256 383

vol(Pinner) 63.0351 72.7864 79.3533 85.4959 89.2063 92.7621 94.5435 96.5105 97.4482 97.5537 98.5291
vol(conv(Pinner)) 63.0351 72.7864 79.5698 85.6542 89.2206 92.8153 94.6067 96.5801 97.4823 97.5806 98.5466

Ratio in % 100 100 99.7279 99.8151 99.9839 99.9427 99.9332 99.9280 99.9650 99.9724 99.9823

Table 4.1: Comparison of volumes of the inner approximation of an ellipsoid and its convex hull

This is further underlined by Table 4.1. It shows that the relative difference in volumes,
if there is any, is considerably less than 1%. The largest discrepancy in this experiment is
given with a set of 32 search directions which leads to 0.27% less coverable volume. On
average, the inner approximation comprises 99.93% of its convex hull in this experiment
making the defect hull algorithm a considerable option for the approximation of smooth
sets.
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Figure 4.18: Approximation of a square using the defect hull approach

For non-smooth boundaries ∂ S, like the square ((B) with β1 = β2 = 1) in Figure 4.18,
the convergence behavior is hinted but not as regular. For the inner polytope of the ap-
proximation to cover the whole square, the four corners must be found during the opti-
mizations. Whether this occurs or not depends on the search directions given as inputs. In
this experiment, sets with nD ∈ {8, 16,24, 32,40, 48} search directions achieve a complete
reconstruction of the square3. The outer polytope reaches the target volume as soon as
one boundary point per side excluding the corners have been found. This explains how the
outer polytope reaches the target volume from the start4.
Figure 4.19 illustrates the results for the cube ((B) with β1 = β2 = β3 = 1). Despite many
performed optimizations, the approximation does not properly takes the form of the cube
as characteristics like the corners and edges are not well reconstructed using this approach.
The defects due to the saved convex hull evaluations are clearly visible in Figures 4.19c and
4.19d but also in Figure 4.19a, as the blue and light blue curves, representing the volumes
of the inner polytope and its convex hull respectively, proceed differently. Nonetheless, the

3This regularity occurs because the nD search directions were uniformly distributed over S1.
4Sets of search directions have been prepared for nD ∈ 4, . . . , 48 for these results. The case nD = 3 leads to

an outer polytope in a H-description where two of the three facets are parallel to each other.
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volumes converge. Furthermore, Table 4.2 makes it clear that despite the dents, the inner
defect hull approximation comprise a large part of the space the convex hull would. On
average, the ratio is 97.95% and in the worst case still more than 95% in this experiment.
This underlines the idea that for two- and three-dimensional applications, a predefined
boundary description is a viable means of saving computational time.
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Figure 4.19: Approximation of a cube using the defect hull approach

nD 16 23 32 47 64 97 128 193 251 256 383

vol(Pinner) 4.8350 6.2119 6.1894 6.5195 6.9535 7.2659 7.4022 7.5954 7.6811 7.6878 7.7690
vol(conv(Pinner)) 4.8833 6.3175 6.2201 6.7301 7.2638 7.4351 7.5938 7.7453 7.8281 7.8420 7.8794

Ratio in % 99.01 98.33 99.51 96.87 95.73 97.72 97.48 98.06 98.12 98.03 98.60

Table 4.2: Comparison of volumes of the inner approximation of a cube and its convex hull

It is of course possible to form the convex hull of the found vertices in the actual applica-
tion if resources are available. However, as mentioned in Section 4.3.2, it is not possible to
exactly predict for higher dimensions how many elements the boundary description con-
sists of. If the predefined set of ordered identifiers is used, further preparations can be
done based on them. The Propositions 4.13 and 4.14 as well as Definition 4.21 have been
formulated in a way, that the presented property can be traced back to an operation on
matrix

DI :=

⎡

⎣d I1 . . . d InS

⎤

⎦ ∈ RnS×nS
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whose columns are search directions in D specified through I ∈ I. Though the computa-
tion times for the determinant and inversion (or decomposition) of DI are relatively low,
especially for small nS , a continuous re-evaluation may be avoided provided slightly more
memory. Each simplex partition of the inner polytope Pinner is a subset of S. Therefore,
to verify whether a given point y ∈ RnS is an element of the inner polytope, at least one
simplex partition must contain y. For this purpose, according to Proposition 4.14, a c ∈ RnS

is computed whose components are non-negative and in sum must not be greater than 1.
Assuming the first condition is fulfilled for a partition with identifier I ∈ I, y − o is located
in the cone defined by the ray directions d I1 , . . . d InS . If the sum of the components of c is
less than or equal to 1, y − o is in or below the facet that makes the cone a simplex. An
example is given through Figure 4.20. Point y1 is inside the cone that is created through
the rays which start at o and extend along d1 and d2. Coefficients c1, c2 ≥ 0 of a conic
combination can be found such that y1− o = c1

�

z∗,1 − o
�

+ c2

�

z∗,2 − o
�

. Another coefficient
c0 := 1− c1 − c2 ≥ 0 exists to complete the convex combination y1 = c0o + c1z∗,1 + c2z∗,2,
since y1 is below the line segment that connects z∗,1 and z∗,2 and thus in P ′(1,2). If the re-
sulting c ∈ RnS represents a conic combination but the sum of its components is larger than
1, then the check does not have to be continued because the interiors of the cones do not
intersect. In this case, y would not be an element of the inner polytope. This is the case
for y2 in Figure 4.20. The point is located in the same cone as P ′(2,3) therefore it cannot be
an element of the interior of P ′(1,2).

P ′(1,2)

P ′(2,3)

S

o

d2

d1

d3
z∗,2

z∗,1

z∗,3
y2

y1

Figure 4.20: Example for application of Proposition 4.14

Furthermore, if the underlying feasibility problem is convex and the resulting c ∈ RnS

represents coefficients of a convex combination, it can be applied to the entire optimization
vector as done in (4.24) in Corollary 4.15. This requires an according to (g, h) feasible
x0 ∈ Rnopt , which satisfies P x0 = o. If x0 is not yet known, this can be determined by
solving the grid task G(o). For a convex feasibility problem (g, h), the results of the defect
hull algorithm can therefore be seen as a library to choose a feasible x ∈ X as long as
P x ∈ Pinner. The difficulty that exists in Proposition 4.9 that additional inequalities must
be considered can be circumvented with a simplex partitioning.
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In the defect hull approach, the optimizations in step G-2 consumes the largest part of the
computation time. Beside the concurrent solving of the optimization tasks, warm starts
should be exploited since the sparsity patterns of internal matrices will not change. How-
ever, these warm starts are not necessarily feasible, as the nS additional constraints in the
defect hull task are rarely fulfilled for two distinct search directions at the same time. In
case of a failed optimization, a solver instance in another thread should retry the task, as
the last solution in the cache represents another initial guess.
From each of the optimizations, sensitivity derivatives can be obtained. Using ∇qη (or
∇pη), the H-representation of the outer polytope Pouter can be specified as in G-3.3. Due
to Theorem 4.17 (or Corollary 3.41), Pouter represents an over-approximation of S. Re-
garding DH(o, ·) as a map sets the foundation for a sensitivity-based reconstruction of ∂ S.
Through the formulation DH(o, d + p) derivative information is available for all elements
d ∈ D in the set of search directions, which, together with the sample points DH(o,D)⊂ S,
can be exploited for interpolation. Each element in D represents an expansion point of a
Taylor polynomial. In (4.35), a nearest-neighbor interpolation approach to estimate z∗ =
DH(o, d) for some d ∈ SnS−1 is presented that proposes which expansion point to choose.
By this means, function s : SnS−1→ RnS , d ↦→ z̃ ≈ DH(o, d) is specified.
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Figure 4.21: Boundary interpolation of an ellipse

The interpolation is applied on the ellipse defined by (E) with α1 = 2 and α2 = 3 after
performing Algorithm G with nD = 4. Figure 4.21 illustrates both approximation types
(4.32) and (4.33). The ellipse in gray, Pinner in blue, Pouter in orange, and function s in violet
are plotted in Figures 4.21a and 4.21b. The white dots represents the points DH(o,D). With
a small number of optimizations, the ellipse can be encapsulated in both cases, although
especially towards a non-continuous transition from one expansion point to the next, the
error of the estimates increases as expected, as the distance to an expansion point rises.
While s leaves Pouter in Figure 4.21a, the reconstruction remains inside the outer polytope
in Figure 4.21b and is significantly closer to S than the inner and outer approximation.
The refinements at d I as defined in (4.36) for I ∈ I are illustrated in Figure 4.22. They
lead to new boundary elements marked in green and extend s by four more expansion
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points. The reconstruction based on (4.32) lies within the over-approximation now. The
gaps between the transition points are visibly smaller. In Figure 4.22b, an overall reduction
of the discontinuities can not be observed. In both cases, the inner polytope grows by the
hatched area and function s takes the form of the ellipse in a clearly recognizable way.
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Figure 4.22: Refined boundary interpolation of an ellipse

Essential for Algorithm G is the vantage point o ∈ z�. So far, o =
�

0, 0
�⊤ is selected as

input for the approximations. If no inner point o results from a user’s preliminary analyses,
it must be determined online. In the case of a convex set S, the initial simplex of the online
convex hull approach can be determined (see E-2 and the discussion in Section 4.3.2), and
o can be defined as the center of gravity of this simplex.
Figure 4.23a shows the approximation of the ellipse, for which o =

�

1.2, 1.4
�⊤ is chosen

as the vantage point. The reconstruction s is less symmetrical and its gravest discontinuities
are located at the lower left (225°) and lower right (315°) of the vantage point. This can be
noted from Figure 4.23b, which illustrates the distances of the transition points in a polar
plot. Each direction d I can be converted to polar coordinates with radius 1. The radius
is scaled according to the approximation discontinuity and drawn into the polar plot. The
circular heatmap is created by evaluating the partition extension potential for all directions
d ∈ SnS−1. Near already optimized search directions d ∈ D the extension potential is about
zero. It grows with the distance between s and the inner polytope. The heatmap ring points
out in which directions the inner polytope expands more during refinements. Both the
approximation discontinuities and the extension potential can be regarded as indicators for
prioritization of the refinements. Figure 4.23e serves as a comparison in which DH

�

o, d I
�

is
solved for all I ∈ I. Figure 4.23c aims for a high growth of the inner polytope and performs
further optimizations in directions given at 135° and 225°. The gained volume through two
additional optimizations is in fact maximized for directions defined in (4.36). Figure 4.23d
prioritize the removal of discontinuities at 225° and 315°. The updated s adjust well to the
ellipse and the distances of transition points is immensely reduced.
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Figure 4.23: Ellipse refinement

−4

−2

0

2

4

−2

0

2

−2

0

2

(a) Sensitivity patches on an ellipsoid

-2
-1

0
1

2

-2
-1

0
1

2
-2

-1

0

1

2

Extension
Potential

0

0.5

1

1.5

(b) Volume and approximation indicator

Figure 4.24: Reconstruction approach illustrated for three dimensions

The reconstruction approach based on sensitivities and a prioritization of refinements can
be transferred to higher dimensions. Figure 4.24a shows patches shaped through slopes
and curvatures determined from sensitivities at the respective boundary points marked by
white dots. Figure 4.24b is the 3D-version of the polar plot in Figure 4.23b. The exten-
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sion potential is given as a heatmap on a sphere, and the approximation discontinuities are
given by the distances between the red dots and the origin.
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Figure 4.25: Sensitivities on the surface of a cube

For sets with non-smooth surfaces, the sensitivity based reconstruction with function s will
not work. Figure 4.25 is regarded as an example. The cube has zero curvatures at the
sides, while edges and corners are not differentiable. Analytically deriving the solutions
that leads to the corners of the cube, one comes to the conclusion that the dual variables
are not unique at the optimum. Though they exist, the supporting hyperplanes there are
not unique either. The ones shown in Figure could be rigorously tilted and would still be
feasible. Furthermore, the matrix in (3.29) is not invertible, so no meaningful second-order
sensitivities can be expected.
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Figure 4.26: Sensitivity-based boundary reconstruction of the Rayleigh problem

An application to star-shaped sets is also possible under certain circumstances. The result
of the approximation of the reachable set of the Rayleigh problem is illustrated in Figure
4.26. In the first instance, nD = 32 optimizations are performed leading to the white mark-
ers in the plot. The purple sensitivity-based reconstruction adapts to the actual boundary
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of the reachable set quite well in parts. However, in Figure 4.26a, this is only limited to the
local area around a boundary point resulting from an optimization. Three of the transitions
from one Taylor expansion point to the next are especially eye-catching. By evaluating the
approximation discrepancy, they can be detected. In Figure 4.26b, three additional ex-
pansion points, indicated by green markers, are inserted, and the boundary reconstruction
with function s is re-evaluated. The spikes in Figure 4.26a do not appear anymore in Figure
4.26b due to the additional Taylor polynomials.



Chapter 5

Application to Lander Models

In this chapter, an application scenario is presented for which we use the geometric prop-
erties and optimization techniques explained in previous chapters: the powered descent
landing. It will be shown in the following pages that the theoretical constructs we have
considered and derived throughout this thesis add significant value to real-world applica-
tions.
In the powered descent landing phase, a lander’s thrusters are ignited to perform a soft
landing on a celestial body after reducing the orbital speed with a parachute. These
thrusters control the state vector

x : [t0, t f ]→ R7,

x (t) =
�

px(t), py(t), pz(t), vx(t), vy(t), vz(t), m(t)
�⊤ (5.1)

with p∗(t), v∗(t) ∈ R, ∗ ∈ {x , y, z}, describing the respective position and velocity compo-
nent and m(t) ∈ R indicating the mass (implicitely the amount of fuel left) of the lander,
subject to the following dynamical system:
⎛

⎝

ṗx(t)
ṗ y(t)
ṗz(t)

⎞

⎠=

⎛

⎝

vx(t)
vy(t)
vz(t)

⎞

⎠ (5.2a)

⎛

⎝

v̇ x(t)
v̇ y(t)
v̇z(t)

⎞

⎠= −S (ω)2

⎛

⎝

px(t)
py(t)
pz(t)

⎞

⎠− 2S (ω)

⎛

⎝

vx(t)
vy(t)
vz(t)

⎞

⎠+ g (t) +
Tc(t)
m(t)

, (5.2b)

ṁ(t) = −γm∥Tc(t)∥, (5.2c)

where S (ω) =

⎛

⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ .

Here, ω=
�

ω1, ω2, ω3

�⊤ is the target object’s constant angular velocity vector. Besides
the influence due to the celestial body’s rotation, the acceleration of the lander depends
on the gravity g (t) ∈ R3 and the thrust Tc (t) ∈ R3. The last term in (5.2b) implies a
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reciprocally proportional relation between the acceleration and the mass. The change of
mass is proportional to the magnitude of the thrust vector Tc(t) with a proportionality
factor γm > 0. The initial value m0 and the dry mass mdry represent box constraints for the
state m:

m(t0) = m0, mdry ≤ m(t)≤ m0 for all t ∈ �t0, t f

�

. (5.3)

In both subsequently presented approaches, the first-order ordinary differential equation
(5.2) with regard to (5.3) is further processed and simplified where required and then,
the algorithms of Chapter 4 are applied. A full-discretization is performed on the optimal
control problems based on the trapezoidal method. In the process, either NLPs or SOCPs
have to be solved to approximate this Chapter’s reachability and controllability sets.
Worhp (short for "We Optimize Really Huge Problems") solves NLPs, offering the option
to use an SQP method or nonlinear interior-point method. It is notable that Worhp pro-
vides direct access to the parametric sensitivities [43]. Originally funded by the European
Space Agency, Worhp has been developed at the University of Bremen [20]. A useful tool
is TransWorhp, a software library to transcribe OCPs [41]. On the other hand, in this
work, SOCPs are solved using Ecos (short for "Embedded Conic Solver"). Ecos relies on
a primal-dual interior-point method with Nesterov-Todd scaling [53] and self-dual embed-
ding [25]. Sensitivity derivatives can not be accessed in Ecos. This solver is the result of a
collaboration between ETH Zurich and Stanford University.
All computations are performed on a Lenovo ThinkPad T14 Gen 1 notebook which pro-
motes an AMD Ryzen 7 PRO 4750U with Radeon Graphics and 32 GB RAM. The processor
has eight cores running two threads each. It features a base clock of 1.7 GHz and a maxi-
mum boost clock of 4.1 GHz.

5.1 Lunar Lander Model

The lunar lander model considers a spacecraft with a reaction control system, i.e., several
thrust engines are available aside from a non-throttable main thruster to hypothetically
push the lander in all directions. However, since the thrusters are stationary, the lander’s
attitude must be taken into account. Following [56], β and χ are introduced as pitch and
yaw angles. In the following, (5.2) is simplified by neglecting the Moon’s rotation, thus
setting ω= 0.

5.1.1 Transformation into dhc-frame

The position of the lander vessel can be specified based on downrange, altitude, and cross-
range coordinates (dhc) by rotating the position vector at zero downrange, zero crossrange,
and altitude h. The celestial body to land on is assumed to be spherical with radius r.
For the sake of clarity, we omit the time dependency of functions in the following deriva-
tion. As shown in Figure 5.1, first, a rotation around the x-axis with the angle γ = c

r , and
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then, a rotation around the z-axis with the angle δ = d
r is performed:

⎛

⎝

px

py

pz

⎞

⎠= Rz (−δ)Rx (γ)

⎛

⎝

0
h+ r

0

⎞

⎠ . (5.4)
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Figure 5.1: Relation between x yz- and dhc-coordinates

The gravitational field is assumed to be based on a spherical potential, thus the relation

g = Rz (−δ)Rx (γ)

⎛

⎝

0
− M ·G
(r+h)2

0

⎞

⎠ (5.5)

is obtained, where M and G denote the mass of the Moon and the gravitational constant.
By transforming the total thrust vector T =

�−Tm − Tu, −Ts, −Tq
�T based on pitch and

yaw angle, the effective thrust results

Tc = Rz (β −δ)R y (χ) T

=

⎛

⎝

T1

T2

T3

⎞

⎠=

⎛

⎝

cos
�

β − d
r

� �

(Tm + Tu) cosχ + Tq sinχ
�− sin
�

β − d
r

�

Ts

sin
�

β − d
r

� �

(Tm + Tu) cosχ + Tq sinχ
�

+ cos
�

β − d
r

�

Ts

− (Tm + Tu) sinχ + Tq cosχ

⎞

⎠ .
(5.6)

Inserting the second derivative of (5.4) with regard to time on the left hand side and (5.5)
and (5.6) on the right hand side of acceleration dynamic in (5.2) leads to
⎛

⎝

d̈
ḧ
c̈

⎞

⎠=

⎛

⎝

r
m(r+h) cos c

r
(−T1 cos d

r +T2 sin d
r )+2ḋ
�

ċ
r tan c

r− ḣ
r+h

�

1
m[(−T1 sin d

r −T2 cos d
r ) cos c

r−T3 sin c
r ]+
�

(ḋ cos c
r )

2
+ċ2
�

r+h
r2 − MĠ

(r+h)2

r
m(r+h)[(T1 sin d

r +T2 cos d
r ) sin c

r−T3 cos c
r ]− ḋ2

r sin c
r cos c

r− 2ċḣ
r+h

⎞

⎠ (5.7a)

ṁ= −γm|Tm| − γRCS

�|Tu|+ |Ts|+ |Tq|
�

. (5.7b)
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The state vector (5.1) is renewed as
x :
�

t0, t f

�→ R9,

x (t) =
�

ḋ(t), ḣ(t), ċ(t), d(t), h(t), c(t), β(t), χ(t), m(t)
�⊤

.
(5.8)

The pitch and yaw angles are continuous by adding
β̇ =ωβ and χ̇ =ωχ (5.9)

to the system dynamic with ωβ ,ωχ being commanded angular rates. By specifying the
control vector as

u :
�

t0, t f

�→ R5,

u(t) =
�

Tu(t), Ts(t), Tq(t), ωβ(t), ωχ(t)
�⊤

.
(5.10)

the differential equations of the lunar lander model can be written in the form
ẋ (t) = fdyn (x (t), u(t)) . (5.11)

A detailed derivation of the equations of motion can be found in [5].

5.1.2 Scenario and Results

The values for the constants of the equations of motion in (5.7) and box constraints for
states (5.8) and controls (5.10) are taken from [5] and listed in Tables 5.1 and 5.2.

symbol value unit

radius of Moon r 1.737× 106 m
mass of Moon M 7.3490× 1022 kg

gravitational constant G 6.6743× 10−11 N m2/kg2

main thrust Tm 1 -
fuel consumption rate by main engine γm 5× 10−4 -

fuel consumption rate by RCS γRCS 3.75× 10−4 -

Table 5.1: Constants used in the lunar lander model

The goal is to determine which values for downrange and crossrange are achievable at
the end of a flight. The lander has an initial speed in the downrange direction and is
losing altitude. The mass m and the thruster components Tu, Ts, Tq have no units due to
scaling with the actual total initial mass of the lander. State m should not be less than the
corresponding dry mass of mdry = 0.5, indicating the amount of available fuel. The lower
and upper bounds for the states and controls must be adhered to throughout the flight.
At the landing point at time t f , the lander should have no more velocities and be on the
surface of the Moon (h(t f ) = 0m). A slight deviation of the fixed end states is tolerated:

∆x
�

t f

�

=
�

1m/s, 1 m/s, 1 m/s, free, 1 m, free, 10°, 180°, free
�⊤

. (5.12)
We apply Algorithms D and G in this scenario. The results are visualized in the following
two sections. A fixed and a free end time scenario are regarded, while t0 = 0 is assumed.
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initial final lower bound upper bound unit

ḋ 5 0 −∞ ∞ m/s
ḣ −19 0 −∞ ∞ m/s
ċ 0 0 −∞ ∞ m/s
d 0 free −∞ ∞ m
h 300 0 0 ∞ m
c 0 free −∞ ∞ m
β −86 −90 −90 90 °
χ 0 free −180 180 °
m 0.5397 free 0.5 0.5397 -
Tu 0 free −0.222 0.222 -
Ts 0 free −0.222 0.222 -
Tq 0 free −0.222 0.222 -
ωβ 0 free −2 2 °/s
ωχ 0 free −2 2 °/s

Table 5.2: Boundary values and box constraints of state vector and control vector of the lunar lander

5.1.2.1 Fixed End Time
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Figure 5.2: Reconstruction results of the lunar lander problem

Additionally to the aforementioned dynamics and constraints, a time of flight t f = 40s is
considered. Figure 5.2a shows the reachable set: It has roughly a trapezoidal shape with
rounded corners. The set is almost symmetrical with regard to y = 0 and slightly shifted
to the right. These characteristics are due to the initial velocities ḋ (t0) = 5 and ċ (t0) = 0
in Table 5.2.
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Figure 5.3: States and controls to reach the vantage point
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The reachable downrange and crossrange states are within [−255,467] and [−431,431],
respectively. The purple outline results from Algorithm G, while the white dots are the
boundary elements found in the process. The black star marks the vantage point in (0,0).
The figure also shows the outcome of the grid approach. A 20 × 20 grid is created from
the interval [−1000, 1000]× [−1000,1000], and a trajectory leading to the closest possible
landing point is computed for each grid point.These trajectories also yield the remaining
propellant at the end of the flight. Based on the remaining fuel, a color coding was ad-
ditionally computed and visualized in Figure 5.2a. As the boundary of the reachable set
is approached, the fuel consumption increases but the point where the propellant is com-
pletely used up is never reached under the given circumstances.
With the partition extension potential and the approximation discrepancy introduced in
Definitions 4.21 and 4.22, Figure 5.2b is created. It indicates that the discontinuities in the
transition between Taylor approximations of the boundary reconstructions are relatively
low (less than 10 m), given the dimensions of the reachable set. Therefore, we can con-
clude that the interpolation based on 16 optimization runs yields a reasonable estimation
of the shape of the reachable set. Most volume can be attained through additional opti-
mizations along search directions near the rounded corners of the reachable set. However,
the expected gain is relatively low.
Exemplary states and controls were computed to reach the black marked vantage point
o := (0, 0)⊤ in Figure 5.2a illustrating the algorithms connection to optimization and opti-
mal control. For this, G(o)was solved considering the dynamic system (5.7) and conditions
formulated in Sections 5.1.1 and 5.1.2. Figure 5.3 shows the results. The added layer of
derivatives for the control in (5.9) has lead to a smooth course of the curves representing
the pitch and yaw angles.
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Figure 5.4: Reachable set of the lunar lander problem with varying initial velocities

Leaving the initial fall velocity at ḣ (t0) = −19 and varying ḋ0 and ċ0, Figure 5.4 depicts
how the reachable set shifts. If the initial velocity in the crossrange direction is positive, and
the initial downrange velocity is 0, the set shifts upward. An axis symmetry with respect
to x = 0 can be recognized. If ḋ (t0) = −7 and ċ (t0) = −5 are chosen, a large part of the
set is in the third quadrant.
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Figure 5.5 shows the outcome of a varied end time while remaining at the default scenario
described in Table 5.2. It depicts the outlines of resulting reachable sets. The lighter the
outline, the longer the time of flight t f is. As expected, the area grows with the chosen end
time.
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Figure 5.5: Reachable set of the lunar lander problem with varying end time

5.1.2.2 Free End Time
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Figure 5.6: Reachable sets of the lunar lander problem with free end time

We repeat the evaluation done in Section 5.1.2.1 with a free end time. Figure 5.6 shows the
reachable set under these circumstances. Compared to Figure 5.2a, it is larger with reach-
able downrange and crossrange coordinates ranging in [−1099,1099] and [−1100, 1162],
respectively. The effects of the additional degree of freedom are therefore directly visible.
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The slight shift to more positive downrange coordinates is also visible in Figure 5.6. The
input argument to apply Algorithm D is a 20× 20 grid with equidistant points distributed
over [−1500,2000] × [−2000,2000]. Two heatmaps result: the first one concerns the re-
maining propellant (Figure 5.6a), and the other regards the flight time (Figure 5.6b). The
fuel limits the time of flight. Most of the determined trajectories require all the available
fuel, especially those close to the boundary. The time of flight ranges in [40,65]. However,
the optimization runs do not regularize the controls through an integral term of the Bolza
problem formulation nor penalize the flight time. Therefore, the level transitions displayed
in the heatmap are rather vague.
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Figure 5.7: Volume and approximation indicator corresponding to Figure 5.6

Figure 5.7 shows that the boundary reconstruction has its most prominent discontinuity at
348.75° with an approximation discrepancy of 41 m. An additional expansion point could
potentially improve the reconstruction. Similar to the fixed end time results, the largest
volume potential lies in the rounded corners but is relatively small.
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Figure 5.8: Reachable sets of the lunar lander problem with varying initial velocity and free end time
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Figure 5.8 depicts the same effects as in Figure 5.4, when the initial velocities are varied.
Again, the reachable set is shifted corresponding to the initial velocities in downrange and
crossrange directions.

5.1.3 Computation Time

Computing the lunar lander reachability sets is a complex task involving solving a multi-
tude of NLPs. Four hundred grid tasks and 16 defect hull tasks subject to the lunar lander
constraints have been solved to obtain Figures 5.2a. The boundary reconstruction based
on the defect hull output with 16 optimizations suffices to understand the rough shapes
of the reachability sets. Those reconstructed shapes could become smoother when more
optimization runs are performed. However, this smoothening comes with an additional
computational cost. The green curves in Figure 5.9 show the course of the total computa-
tion times depending on the number of optimizations performed.
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Figure 5.9: Computation times to reconstruct the lunar lander reachability set

The increase of the green curves is almost linear. In addition, the computation times re-
quired for Algorithm D on a 20× 20 grid are plotted in black and gray to compare the two
methods. Both Algorithm G and Algorithm D are parallelizable. The corresponding curves
in lighter colors show the computation times based on two and four threads. The computa-
tion time for the grid approach under said conditions can be reduced from 367.3 s to 265.4 s
with two and 248.7 s with four threads. With free end time, the computation times drop
from 559.5 s to 365.6 s and 291.8 s. In order to perform the defect hull approach with 16
optimizations, it takes 15.9 s, with two threads 11.2 s and four threads 8.7 s. With 383 opti-
mizations, the computation times are 403.8 s, 277.4 s, and 250 s. The significant overhead
with free end time is also noticeable in the defect hull approach. 16 and 383 optimizations
take 32.9 s (21.4 s, 15.8 s) and 713.9 s (462.4 s, 387.8 s), respectively. The computing times
do not scale according to the number of used threads because modern processor cores can
overclock at low workloads, like a single-thread application [64]. The same optimization
task can be solved noticeably faster when fewer processor cores in total are loaded.
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The computation times for the grid approach in Figure 5.9 are on the order of minutes.
Here, we achieved a significant improvement because, with the discretization approach in
[5], the computation of reachable sets takes several days. To a small extent, this improve-
ment can be attributed to the slightly improved technical prerequisites. From a numerical
point of view, the discretization procedure with single-step methods presented in this work
leads to significantly sparser internal matrices. Solvers that take the structures of matrices
into account can immensely reduce the computational cost. Though the pseudo-spectral
methods presented in [5] lead to smoother solutions, the internal matrices are dense. As
a result, significantly more arithmetic operations have to be performed, which increases
the computing time. Smooth controls are not needed to approximate the reachability set
since the trajectories and controls found are not necessarily applied.
The great strength of the defect hull approach becomes especially apparent when only the
approximate shape and magnitude of the reachable set are needed. With only 16 opti-
mizations and a potential computation time of around 10 seconds, a good approximation
of the set is obtained relatively quickly as illustrated in Figures 5.2a and 5.6a.

To conclude this part, the idea expressed in (4.3) is taken up again. Here, the question is
treated of how the output from the grid algorithm can still be utilized. By the assignment
(4.3), it is proposed to consider a grid point as a parameter which can be disturbed.
Suppose a trajectory and control are sought to a landing point that is close to a grid
point. In that case, the difference can be considered a perturbation, and the result of
the Taylor approximation based on sensitivities can be used as an initial guess. Besides
this strategy, the more straightforward idea is to use as an initial guess the result of the
discretized optimal control problem that led to the trajectory of the closest grid point. Both
approaches are compared to the classical approach, with only a consistent initial guess
for any potential landing point. Over 10000 random landing points have been chosen
respectively for the fixed and free end time scenario. Trajectories are obtained by solving
grid tasks G(p̂) in which all landing points can be inserted as p̂.
Figure 5.10a shows the result for the lunar lander problem and indicates the incidences
subject to the computation times. In addition to that, further details like the 95th per-
centile have been separately determined. It becomes clear that the superior initial guess
approach is the one choosing the initial guess given by the closest grid points. Significantly
more trajectories can be found in about 0.2 s or less. 95 % of the optimizations are solved
in less than 3.8 s, while the 95th percentile using a consistent initial guess is 0.73 s.
The incidences provided the sensitivity based initial guesses are more distributed over
the illustrated time frame. 95 % of the optimizations are performed in less than 0.71 s.
Therefore, the latter hints only at a minor improvement to the consistent initial guess
strategy. Similar results can be observed in Figure 5.10b. The 95th percentile for each
approach is 1.8 s (consistent), 1.4 s (closest) and 2.5 s (sensitivity). These numbers are also
indicators that, in general, the computation time increases greatly when an OCP with free
end time is regarded.
In conclusion, the sensitivity-based initial guess strategy proposed in (4.3) does not rep-
resent an improvement to the classic, consistent initial guess strategy. However, choosing
a trajectory and controls that lead to the closest grid point reduces the computation times
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Figure 5.10: Computation times to get trajectories based on Algorithm D and different initial guess strategies

and makes the solving procedures more robust. Therefore, it can be concluded that a
seemingly closer trajectory and controls with infeasibilities due to the first-order Taylor
approximation cannot outweigh the actual feasibility of an initial guess when aiming for
convergence.

5.2 Fully Constrained Marslander Model

In [28], Eren et al. present a Mars landing scenario that, through relaxation, leads to
a trajectory generation approach based on second-order cone programming. Besides the
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equation of motion in (5.2), the following constraints are regarded

∥v(t)∥ ≤ Vmax (5.13a)
∥E(p(t)− p(t f ))∥ ≤ cT (p(t)− p(t f )) (5.13b)

0< ρ1 ≤ ∥Tc(t)∥ ≤ ρ2 (5.13c)

n̂
Tc(t)
∥Tc(t)∥

≥ cos(θ ) (5.13d)

for all t ∈ [t0, t f ]. The inequality in (5.13a) is a speed limit, so the velocities are bounded
over time t ∈ �t0, t f

�

. The expression (5.13b) is the so-called glideslope constraint that
restricts the position components to be in a cone. Due to this constraint, the flight path
does not become too shallow or cross the surface. As in [28], we choose

c =
1

tan
�

γgs
�

⎛

⎝

1
0
0

⎞

⎠ , E =

�

0 1 0
0 0 1

�

. (5.14)

There is a natural upper bound for the thrust due to an engine’s performance expressed
by ρ2 ≥ 0 in (5.13c). The lower bound ρ1 ≥ 0 for the norm avoids combustion instability
issues for small thrusts (cf. [50], p. 8). Providing a normalized vector n̂ ∈ R3, (5.13d)
ensures that a vehicle’s thruster points correctly. The angle between a thruster’s pointing
and the desired direction may deviate by a tolerated angle 0 ≤ θ ≤ π. Finally, boundary
conditions for the mass are considered:

m(t0) = m0, m(t f )≥ m f (5.15)

5.2.1 Convexification

While (5.13a), (5.13b), and the upper bound in (5.13c) are second-order cone constraints,
some non-convexities forbid incorporating the discretized version of the dynamics (5.2) and
constraints (5.13) as a feasibility problem into an SOCP. These non-convexities are located
in the thruster term in the acceleration equation (5.2c) (division by mass), the negative
norm in the mass depletion (5.2c), in the lower bound for the thrust magnitude (5.13c),
and the thrust pointing constraint (5.13d). Following the approach in [9], the relaxation
starts by introducing a slack variable Γ (t) ∈ R, t ∈ �t0, t f

�

to replace (5.13c) and (5.13d)
with

∥Tc(t)∥ ≤ Γ (t), (5.16a)
n̂Tc(t)≥ Γ (t) cos(θ ), (5.16b)
ρ1 ≤ Γ (t)≤ ρ2. (5.16c)

While (5.16a) is a second-order cone constraint, (5.16b) and (5.16c) are linear inequalities.
Thus, (5.16) displays convex constraints. Note that if (5.16a) is active, the original non-
convex conditions (5.13c) and (5.13d) are fulfilled. In this case, the relaxation is termed
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lossless convexification in [50]. We establish variables and substitute as follows to further
remove the non-linearities in the dynamics:

σ(t) :=
Γ (t)
m(t)

, u(t) :=
Tc(t)
m(t)

, z(t) := ln m(t) (5.17)

Hence, the constraint (5.16c) changes to

ρ1e−z(t) ≤ σ(t)≤ ρ2e−z(t), (5.18)

where this time, the upper bound describes a non-convex region. We can bypass this prob-
lem by using a working point

z0(t) = ln(m0 − γρ2 t), (5.19)

to estimate e−z(t) with a first-order Taylor approximation1 for the upper bound. For the
lower bound, we use a second-order approximation:

ρ1e−z0(t)
�

1− (z(t)− z0(t)) + 0.5(z(t)− z0(t))
2
�≤ σ(t)≤ ρ2e−z0(t)[1−(z(t)−z0(t))]. (5.20)

Using the remainder terms of the Taylor expansions, it can be shown that these approx-
imations of e−z(t) are sufficiently accurate (compare [9], p. 1359). The changes due to
substitution (5.17) in the dynamics and other constraints are more intuitive and can be
found in the following summary of the relaxation:
⎛

⎝

ṗx(t)
ṗ y(t)
ṗz(t)

⎞

⎠=

⎛

⎝

vx(t)
vy(t)
vz(t)

⎞

⎠ (5.21a)

⎛

⎝

v̇ x(t)
v̇ y(t)
v̇z(t)

⎞

⎠= −S (ω)2

⎛

⎝

px(t)
py(t)
pz(t)

⎞

⎠− 2S (ω)

⎛

⎝

vx(t)
vy(t)
vz(t)

⎞

⎠+ g + u(t), (5.21b)

ż(t) = −γmσ(t), (5.21c)
∥v(t)∥ ≤ Vmax, (5.21d)

∥E(p(t)− p(t f ))∥ ≤ cT (p(t)− p(t f )), (5.21e)
∥u(t)∥ ≤ σ(t), (5.21f)

cos(θ )σ(t)≤ n̂u(t), (5.21g)
ρ1e−z0(t)
�

1− (z(t)− z0(t)) + 0.5(z(t)− z0(t))
2
�≤ σ(t) (5.21h)

≤ ρ2e−z0(t)[1− (z(t)− z0(t))]

z(t0) = ln m0, z(t f )≥ ln m f (5.21i)
1These approximations are necessary to ultimately incorporate both inequalities into an SOCP. Strictly

speaking, however, one must note that the linearization of the upper bound in (5.20) is a tightening of the
original constraint and not a relaxation. In fact, due to the strict convexity of the composition exp (−z (t)),
exp (−z (t))> exp(−z0 (t)) (1− (z (t)− z0 (t))) holds true.
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The state vector for the relaxed problem is
x :
�

t0, t f

�→ R7,

x =
�

px(t), py(t), pz(t), vx(t), vy(t), vz(t), z(t)
�⊤

.
(5.22)

and the control vector is
u :
�

t0, t f

�→ R4,

u(t) =
�

u1(t), u2(t), u3(t), σ(t)
�⊤

.
(5.23)

5.2.2 Lossless Convexification

It is important to note all efforts to obtain (5.21) has lead to a non-equivalent variation of
the original problem (5.2) with (5.13). For fixed boundary values

p(t0) = p0, v(t0)= v0

p(t f ) = p f , v(t f )= v f
(5.24)

a lossless convexification result exists for the energy optimal problem

min
t f ,x ,m,Tc ,Γ

t f
∫︂

t0

Γ (t)d t

subject to (5.2), (5.13a), (5.13b), (5.15), (5.16), (5.24).

(5.25)

The solution
¦

t∗f , x ∗, m∗, T ∗c , Γ ∗
©

of (5.25) also yields minimizer
¦

t∗f , x ∗, m∗, T ∗c
©

of

min
t f ,x ,m,Tc

t f
∫︂

t0

∥Tc(t)∥d t

subject to (5.2), (5.13), (5.24)

(5.26)

(cf. Theorem 1 in [21]). The solution of

min
t f ,x ,u

t f
∫︂

t0

σ(t)d t

subject to (5.21), (5.24)

(5.27)

always implies a feasible solution of (5.26) after back-substitution [21]. There are two
aspects to consider here. First, the time of flight t f is an optimization variable in (5.25),
(5.26), and (5.27). Thus, the discretization of those optimal control problems does not
result in a SOCP or CP. Instead, the (5.27) is solved several times with different fixed
t f ∈ (tmin, tmax] until the minimum cost is determined. Examples of interval limits are

tmin = 0 and tmax =
m0 −m f

γmρ1
.
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Due to (5.21c), (5.27) can thereby be converted into a Mayer-problem through following
equivalence:

t f
∫︂

t0

σ(t)d t = − 1
γm

�

z(t f )− z(t0)
�

.

Secondly, the result of a grid, online convex hull, or defect hull task subject to the relaxed
problem (5.21) for a fixed time of flight is not necessarily feasible in terms of the original
dynamics (5.2) and constraints (5.13). These tasks have their respective objective functions
but the lossless convexification conclusion is coupled to a cost functional that minimizes
energy. However, due to convexity of the relaxed feasible set, any point in the forward or
backward reachability set associated with (5.21) is necessarily linked to some feasible state
trajectory x and controls u for time t ∈ �0, t f

�

. Thus, the solution set of (5.27) cannot be
empty and an energy-minimal solution must exist with an optimal time of flight t∗f .

5.2.3 Scenario and Results

In this section, the relaxed reachability and controllability set for the Mars lander scenario
are approximated using the online convex hull and defect hull algorithm. The results of
both algorithms are then compared. Table 5.3 lists the values for the constants used in the
dynamic model and the constraints. They are taken from [28].

symbol value unit

Martian gravity vector g
�−3.71, 0, 0

�⊤
m/s2

Martian rotation vector ω
�

2.53, 0, 6.62
�⊤

10−5 rad/s
wet mass of lander m0 2000 kg
dry mass of lander mdry 1700 kg

maximum thrust capacity Tmax 24 kN
lower bound for thrust ρ1 0.2 · Tmax kN
upper bound for thrust ρ2 0.9 · Tmax kN

fuel consumption γm 5× 10−4 s/m
maximum thrust
pointing deviation θ 45 °
glideslope angle γgs 15 °
maximum velocity Vmax 130 m/s

time of flight t f 50 s

Table 5.3: Values for constants used in the Mars lander model

For the controllability set, initial velocities

v (t0) =
�−100 20 0
�⊤ (5.28)
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are assumed and for those, feasible initial positions ought to be determined such that the
final states

p
�

t f

�

=
�

0 0 0
�⊤

, v
�

t f

�

=
�

0 0 0
�⊤ (5.29)

can be reached. For the reachability analysis, the initial states

p (t0) =
�

3000 1000 500
�⊤

, v (t0) =
�−80 20 0
�⊤ (5.30)

are fixed and the goal is to find all positions at which the velocity can be reduced to 0 after
a fixed time of flight t f :

v
�

t f

�

=
�

0 0 0
�⊤

. (5.31)

For both scenarios, the initial value m0 and the lower bound mdry are considered for the
mass of the spacecraft. The start time t0 = 0 is assumed. Figures 5.11 and 5.12 illus-
trate the computation times for the online convex hull and the defect hull. The respective
histograms and scatter plots exhibit times to perform 2980 optimizations runs2. Both the
controllability and reachability scenario are examined. The colored lines in both scatter
plots indicate the median and the 95th percentile. Despite additional constraints in the
defect hull algorithm, the calculation effort of the algorithms does not differ much and
ranges in a very similar order in terms of computation time. The median of the defect hull
tasks is 0.00938 s and marginally lower than the median of the online convex hull tasks
(0.009447 s). Conversely, 95% of the online convex hull tasks are done after 0.012721 s,
while this value is 0.012967 s for the defect hull algorithm. These computation times may
be affected by different processor loads or unclean programming, among other reasons,
but it suggests that the effort required to optimize the different problems is comparable.
The following two subsections treat the controllability and reachability results for the Mars
lander separately. In the process, we examine the outcome of the online convex hull and
defect hull algorithms. The conjecture in [28] that the relaxed reachability set equals the
original set has neither been shown nor disproved in this work. The same holds for the
relaxed and original controllability set. However, for both scenarios, more than 15,000
elements of an approximate relaxed set have been checked to determine whether trajecto-
ries exist that have those elements as boundary values and fulfill the corresponding original
conditions. Since the feasibility problem is nonlinear, an NLP solver must be applied for
these checks. Nearly all elements have been admissible as initial or final states with devi-
ations of less than one centimeter. The most prominent outliers have a deviation of under
one meter. Individual adjustments to the parameters of the NLP solver could probably mit-
igate these more significant deviations. Due to the total number of elements that need
an inspection, this has not been done. In addition, an experiment is conducted related to
Corollary 4.15. Each element of an approximating polytope of the defect hull algorithm

2Both the online convex hull and the defect hull algorithm have been applied with nV optimizations, where
nV ∈ {16, 23,32, 47,64, 97, 128,193, 251,256, 383} is an element of a set of powers of 2 and prime numbers.
These numbers add up to 1490 which multiplied by the number of scenarios (reachability and controllability)
makes 2980.



98 Chapter 5. Application to Lander Models

can be assigned a feasible trajectory and a control subject to the relaxed problem (5.20)
since the dynamics and constraints are convex. Therefore, we shall examine whether an
adaptive initial guess through Corollary 4.15 is more suitable than a consistent nominal
one. The consistent initial guess is chosen as the solution of G(o) subject to (5.21), where
o is the vantage point for the defect hull algorithm.
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Figure 5.11: Overview of computation times for online convex hull tasks
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Figure 5.12: Overview of computation times for defect hull tasks

5.2.3.1 Controllability

Figure 5.13 illustrates polytopes with 256 vertices that approximate the relaxed controlla-
bility set of the Mars lander. The first row shows the respective results of the online convex
hull algorithm (5.13a), the defect hull (5.13b), and the convex hull of the inner polytope
(5.13c) that resulted from Algorithm G. The second row exhibits the same results from the
upside-down view. A slight shift to negative py values is visible and caused by the positive
initial velocity in py -direction in (5.28). Compared to the defect hull, the product from the
online convex hull algorithm has a less regular triangulation but more distinctive shapes.
Apparently, the lower end converges like a cone in the actual relaxed controllability set.
This is observable in Figure 5.13d but is not happening in Figure 5.13e. However, applying



5.2. Fully Constrained Marslander Model 99

the convex hull on the vertices of the defect hull, the correction of the triangulation seems
to become necessary just there, as Figure 5.13f shows. The convex hull shows a similar
boundary description on the upper part of the defect hull approximation in Figures 5.13b
and 5.13c. Again, it can be concluded that the defect hull algorithm produces good results,
especially for smooth surfaces. For hard edges, the online convex hull approach is more
suitable.
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(f) Convex hull of defect hull

Figure 5.13: Visualized approximations of the relaxed controllability set

Figure 5.14 summarizes all approximations of the controllability set. In Figure 5.14a, the
volumes of the generated polytopes are plotted against the number of performed optimiza-
tions. The convergence behavior of the curves is recognizable the larger the values of the
x-axis become. The online convex hull algorithm covers a larger area of the sought set with
few optimizations. However, with an increasing number of optimization runs, the defect
hull algorithm is in no way inferior. The inner polytope of the defect hull algorithm is al-
ways nearly congruent to its convex hull and covers more than 99% of the space. This can
be seen from the almost identical gray and dark blue curves in Figure 5.14a. The mirrored
image is recognizable concerning the outer polytope. The upper approximation, which
arises with the defect hull, is closer to the sought relaxed controllability set than the online
convex hull as the volumes are consistently lower. The total computation times are plotted
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Figure 5.14: Summarized results of the controllability scenario

against the number of optimization runs in in Figure 5.14b. The defect hull approach is
slightly faster, and it can be further accelerated by distributing the computational load on
multiple threads. However, the computation time does not quite scale accordingly because
the effort to distribute the tasks and resources increases with the number of threads. Nev-
ertheless, the added value of a parallel calculation is significant. It takes 2.57 s to construct
the polytope in Figure 5.13a, whereas the polytope in Figure 5.13b needs 2.54 s or 1.3 s,
0.79 s, 0.58 s and 0.47 s as the number of threads doubles.
Over 15,000 initial positions that are admissible subject to the relaxed problem are checked
to see if they are part of the controllability set of the original problem. Random elements
ẑ from the inner defect hull approximation of the relaxed controllability set after 256 op-
timizations are considered as target points to be best approximated by a solution of G(ẑ)
subject to the nonlinear constraints (5.2), (5.13), and boundary values (5.28), (5.29). In
the process, feasible trajectories and controls are found that feature a respective objective
value of nearly 0. This is seen as an indicator that the relaxed and the actual controllability
set coincide for this specific scenario, as the conjecture in [28] states. Simultaneously, this
experiment is conducted from another viewpoint. It yields insights into how long it takes to
compute trajectories starting from different initial states that lead to a common final state.
Recalculation of a reference trajectory is needed in a landing scenario if the initial state
has been inadequately estimated. This experiment offers good prerequisites to compare
the two initial guess strategies. The adaptive initial guess generation exploits the results of
the relaxed controllability approximation. It is superior compared to a classic "one for all"
initial guess in terms of computation time, as it turns out.
As Figure 5.15 indicates, the median of the necessary computation times lies at about 0.49 s
using a consistent initial guess, while this value is 0.41 s when adaptive initial guesses are
applied. Both values have a relative difference of about 16%. The 95th percentile can be
even more decreased. From about 0.62 s to 0.45 s, a reduction by more than 26% is possi-
ble.
Figure 5.16, reflects the shortened optimizations through the number of necessary itera-
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tions in the solution processes. While the classical strategy leads to amedian of 27 iterations
and a 95th percentile at 33 iterations, the median in the evaluation of the adaptive strategy
is 24 iterations, and the corresponding percentile is 26 iterations. This means a decrease of
more than 11% for the median and more than 21% for the 95th percentile. In both Figures
5.15 and 5.16, the significant reduction of the respective 95th percentile is visible as there
are no samples beyond 1 s or 50 iterations. Also, the median and the 95th percentile are
closer together when adaptive initial guesses are used.
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Figure 5.15: Computation times using different initial guess strategy in the controllability scenario
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Figure 5.16: Number of iterations using different initial guess strategy in the controllability scenario

A precomputed relaxed controllability set can significantly speed up the recalculation of a
reference trajectory and provide confidence that a particular end state can still be achieved.
Controls and state trajectories found during optimizations of the relaxed problem can thus
be effectively reused in the nonlinear context.

5.2.3.2 Reachability

Figure 5.17 illustrates polytopes with 256 vertices approximating the relaxed reachability
set of the Mars lander. The first row shows the respective results of the online convex
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hull algorithm (Figure 5.17a), the defect hull (Figure 5.17b), and the convex hull of the
inner polytope (Figure 5.17c) that resulted from Algorithm G. The second row exhibits
the similar results from the upside-down perspective.
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(c) Convex hull of defect hull
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(f) Convex hull of defect hull

Figure 5.17: Visualized approximations of the relaxed reachability set

Many analogies between the reachability and the controllability results can are observable
here. The set has a slight tendency to positive py values caused by the positive initial
velocity in py -direction in (5.30). Compared to the defect hull, the outcome from the
online convex hull algorithm has a less regular triangulation but features a more distinctive
shape on the upper part of the set. The relaxed reachable set’s upper end converges similar
to a cone. This is visible in Figure 5.17a but is not reflected in Figure 5.17b. It becomes
apparent after the evaluation of the convex hull though. The convex hull shows a very
similar triangulation in the lower part of the defect hull approximation. The relaxed
reachability set looks like a rotated version of the relaxed controllability set as there is a
cone-shaped and a smooth round part. The smooth part of the relaxed controllability set
is flatter, while the relaxed reachable set is more extensive.
In Figure 5.18a, the convergence of the volumes of the generated polytopes can be
observed as the number of optimizations increases. The inner approximation of the online
convex hull algorithm covers more volume than the defect hull. The inner polytope of the
defect hull approach is practically congruent to the convex hull of its vertices, with more
than 99% of the space covered. Conversely, the outer approximation of the defect hull is
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closer to the actual sought set than the outer approximation of the online convex hull. In
the run time comparison in Figure 5.18b, the computation runs through slightly faster
using the online convex hull algorithm in most configurations concerning the number of
optimizations. It takes roughly the same time (2.75 s) to obtain the polytopes in Figures
5.17a and 5.17b. However, in the case of the defect hull approach, the computation time
can be reduced to 1.3 s, 0.79 s, 0.58 s and 0.47 s as the number of threads doubles. The
advantages due to the option of parallelization in Algorithm G are thus also evident here.
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Figure 5.18: Summarized results of the reachability scenario

It is checked in the same manner as in Section 5.2.3.1 whether the relaxed and the
actual reachable sets coincide. Over 15,000 random elements in the defect hull’s inner
polytope approximating the relaxed reachable set are chosen. For each random element
ẑ, grid task G(ẑ) is solved subject to the nonlinear constraints (5.2), (5.13) and boundary
values (5.30), (5.31). The respective optimal objective values practically vanish as well in
this scenario. Hence, another indicator is found supporting the conjecture in [28] that the
relaxed and the original reachability sets are equal.
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Figure 5.19: Computation times using different initial guess strategy in the reachability scenario
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A fast recalculation of the reference trajectory becomes necessary in a landing scenario if
the landing site must be changed due to hazards or other harsh conditions at the original
target position. For this purpose, the relaxed reachability set can be exploited as a library
for initial guesses. Figure 5.19 compares the computation times between the consistent
and the adaptive initial guess strategy. The median lies at 0.49 s in Figure 5.19a and can
be reduced to 0.43 s in Figure 5.19b. The relative difference is 13.7%. The 95th percentile,
originally at 0.61 s, is decreased to 0.51 s, which makes a relative difference of about 17%.
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Figure 5.20: Number of iterations using different initial guess strategy in the reachability scenario

The improvements are visible in Figure 5.20 as well. The median for the necessary number
of iterations is originally 26 and can be reduced to 24. The 95th percentile falls from 32
to 26 iterations. Relative differences of about 7.7% and 18.75% are therefore possible.
The relaxed reachability set states not only all feasible landing sites but also provides the
means to find the corresponding trajectories and controls faster. Providing an adaptive
initial guess benefits the solving of an NLP in terms of speed and robustness.



Chapter 6

Conclusion

This chapter concludes the present work. It summarizes the most important results and
addresses possible starting points for further research.

6.1 Summary

This work has presented algorithms aiming to approximate reachability sets based on op-
timization techniques. The defect hull algorithm has been newly developed. The general
approach of approximating sets by polytopes is not new, but the theoretical and algorithmic
tricks to obtain the highest possible yield from a costly optimization. Theoretical founda-
tions regarding geometry and numerical optimization were established for this and other
presented algorithms. Essential elements were the parametric sensitivity analysis and con-
vexity in the geometric and function-theoretical sense. With the help of parametric sensitiv-
ity analysis, both slope and curvature at boundary points of a set can be determined under
certain conditions. Making this data accessible allows the interpolation of the boundary
of the sets with only a few optimizations. The reconstruction by interpolation reduces the
need for large numbers of optimization.
Convex optimization is a mature mathematical technology that has gained popularity in the
aerospace domain. The class of SOCP generalizes linear programs without losing conver-
gence properties. SOCP solvers reliably provide fast global solutions, essential in real-time
applications. While convex optimization covers only a small fraction of all conceivable prob-
lem formulations, it is possible to determine the optimal control for a complex nonlinear
application such as landing on the surface of Mars by formulating and solving a SOCP.
The grid, online convex hull, and defect hull algorithm have been presented. Every ap-
proach has its merits and produces an over-approximation of the set in the case of a convex
set. The grid algorithm can cover most applications because it can handle sets of any shape.
The online convex hull and defect hull algorithms produce polytopes and work best when
the desired convex set. In the online convex hull algorithm, optimizations are performed
sequentially. The result is a convex polytope. The defect hull algorithm allows the par-
allelization of optimizations. The resulting polytope may be non-convex, but it loses no
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volume in the two-dimensional and only a tiny fraction of the volume of the actual convex
hull in the three-dimensional. If the boundary is smooth, the defect hull algorithm, unlike
the other approaches, can be used to determine the curvature pointwise.
As applications, two landing scenarios have been regarded. In the lunar lander model,
coordinates are transformed into the dhc-framework. The resulting optimization problem
is an NLP. In the Mars lander scenario, the dynamics and constraints are relaxed such that
the feasibility problem is convex. The lossless convexification result has been presented. It
states that the result of the relaxed feasibility problem adheres to the original dynamic and
constraints for a specific objective. It is not proven that the reachability or controllability
set of the relaxed feasibility problem can be equated with the corresponding set concerning
the original constraints. However, there are hints that they are congruent. Nonetheless, the
relaxed set provides an excellent basis to guarantee initial guesses with which nonlinear
programs can be solved. The state trajectories and controls found with an SOCP solver that
lead to boundary points of the relaxed dynamically constrained set were given to an NLP
solver that searches for corresponding elements in the original feasibility set. The objective
function of the nonlinear program was to get as close as possible to the boundary point.

6.2 Outlook

This work is a highly theoretical interpretation of how reachability analysis can be used in
space missions. Many analyses would have to be run in advance for the actual online appli-
cation of the defect hull algorithm during a critical mission phase. It must be determined
how many optimizations can be allowed and are necessary. Accordingly, search directions
would have to be determined. In order to exploit the full potential, parallel computing
would have to be possible for the on-board computer. For embedded systems, due to the
predefined number of optimization and the fixed number of facets, memory allocation can
be done precisely without redundancy. In combination with convex optimization, the best
conditions for an actual application exist here.
In the context of the landing scenario, the next step would be to overlay a topographic map,
a hazard map, and the reachability set. Once a decision has been made on which landing
site to select, a landing trajectory must be calculated. Since an excellent initial guess exists
at this point, this trajectory could be determined through a nonlinear program. Here, how-
ever, excessive tests would have to be carried out in order to check whether a convergence
of the NLP solver can be consistently brought about.
From a theoretical point of view, it would be interesting to know whether the dual vari-
ables can be specified in addition to the primary ones for the initial guesses. In SOCP
solver, the number of Lagrange multipliers for a second-order cone constraint corresponds
to the dimension of the cone, while in the NLP context, only one is necessary. A reasonable
transformation of SOCP multipliers into NLP multipliers could benefit convergence. In case
of relaxation, the back substitution would also have to be considered for the dual variables.
The parametric sensitivity analysis for conic programs is another fascinating topic worth
investigating to extend the theoretical foundation of the algorithms in this work. See [1]
as a good starting point for further research.
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The algorithms would theoretically also work in higher dimensions. However, a signifi-
cantly larger number of optimizations are likely to be required to approximate a set of
dimensions beyond three with sufficient accuracy. A major advantage of the defect hull
algorithm is that the considered use cases in two- and three-dimensional space leads to a
polytope that has no or only a slight deviation from the actual convex hull. Whether this
condition also holds in higher dimensions needs verification. A helpful addition would be a
parallel thread in which the convex hull is calculated and updated as soon as an optimiza-
tion run is finished and a new vertex is available. If states of different units are considered
in the dynamically constrained set, a suitable scaling approach would also have to be de-
veloped.
Great potential lies in the interpolation strategy based on the outcome of the defect hull
algorithm. The presented one applies the Taylor expansion with an operating point closest
to the evaluation point. Other strategies should be investigated as well. In particular, the
case should be considered where the element to which a Taylor expansion maps may be
outside the outer approximation. Either this element must be filtered in the course of this
or re-evaluated on the basis of another working point. Overall, parametric sensitivity anal-
ysis provides a powerful tool to constrain the highest cost of optimization-based algorithms
for computing reachability quantities: the optimization runs themselves.
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